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Notes connected with algebraic functions

1 Minimal polynomial algebraic functions hav-

ing a singular point with defined type

The simplest conditions for a singular point at (z0, w0) are either

∂P

∂z
(z0, w0) = 0 (1)

or
∂P

∂w
(z0, w0) = 0. (2)

These conditions can be extended by adding to them

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

= 0 (3)

for any (s, t) ∈ S where the set S satisfies

(s, t) ∈ S implies both (s− 1, t) ∈ S (provided s− 1 ≥ 0)
and (s, t− 1) ∈ S (provided t− 1 ≥ 0).

(4)

These conditions ensure that a derivative is not equated to zero when a more
significant derivative (corresponding to a more significant i.e. lower order term
in the Taylor series) at the same point is non-zero. There is another set of
derivatives that dominate (are of lower order than) any other derivative not
required to be zero. These are the derivatives in (3) for all (s, t) ∈ T where T
is such that

for each (s, t) such that s ≥ 0 and t ≥ 0 and (s, t) /∈ S then
for at least one (k, l) ∈ T, s ≥ k and t ≥ l.

(5)

Then S is uniquely determined by T as the set (s, t) such that for all (k, l) ∈
T, s < k or t < l i.e.

S = {(s, t) : ∀(k, l) ∈ T (0 ≤ s < k or 0 ≤ t < l)} (6)

The set T is also unique once S is determined. This is because each member
of T imposes a condition on S and none of these conditions can be deduced
from the others (if that happened the deduced ones would be removed from
T ), so if (s1, t1) ∈ T this implies that 0 ≤ s < s1 or 0 ≤ t < t1 so this condition
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must therefore be in any alternative T1 to T that has the same effect (same S)
or deduced from it, but the latter is ruled out because any T is defined to be
minimal as described above. This shows that any member of T is in T1 and
vice versa therefore T = T1 so T is unique.

For finding the derivatives of the polynomial the following result is needed:

∂kzs

∂zk
=

s!zs−k

(s− k)!
if k ≤ s and 0 otherwise (7)

so

∂k+l

∂zk∂wl
(zswt) =


s!t!zs−kwt−l

(s− k)!(t− l)!
if k ≤ s and l ≤ t

0 otherwise
(8)

Now consider what terms need to be included in the polynomial P (z, w) =∑∑
astz

swt = 0 that represents the function w(z). If (s0, t0) ∈ T and as0t0 =

0 then the required non-zero value for ∂s0+t0P
∂zs0∂wt0

∣∣∣
z0,w0

can only come from term(s)

astz
swt where s ≥ s0 and t ≥ t0. Therefore the simplest i.e. lowest order choice

of polynomial (the minimal polynomial as in this section heading) is when ast 6=
0 for all (s, t) ∈ T and ast = 0 for all non-negative integer pairs (s, t) /∈ S ∪ T .
This gives

P (z, w) =
∑∑
(k,l)∈S∪T

aklz
kwl = 0. (9)

There are presumably interesting cases with polynomials not satisfying (9)
when more than one singular point is expected, but the following analysis
concerns only cases when (9) holds. The following system

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

= 0 for all (s, t) ∈ S (10)

involving the parameters

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

for (s, t) ∈ T (11)

must be solved for the ast for (s, t) ∈ S ∪ T. Sustituting (9) into ∂s+tP
∂zs∂wt and

using (8) gives

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

=
∑∑
(k,l)∈S∪T
k≥s, l≥t

akl

(
k!l!zk−s0 wl−t

0

(k − s)!(l − t)!

)
for all (s, t) ∈ S ∪ T. (12)

For (s, t) ∈ T there is just a single term in the sum. It has k = s and l = t so

ast =
1

s!t!

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

for all (s, t) ∈ T. (13)
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Equation (12) relates ast to only other values akl with k ≥ s and l ≥ t. If the
latter have already been found, ast can be determined. The latter themselves
can be solved from other members of (12) likewise. Therefore if for each
(s, t) ∈ S ∪ T

p = #{(k, l) ∈ S ∪ T : k ≥ s and l ≥ t} (14)

is introduced, every element ast can be solved for in terms of other akl with a
smaller value of p. Therefore (12) must be solved for the ast in any order in
which p is non-decreasing. This shows that the ast are uniquely determined
from (12).

The result of this is

P (z, w) =
∑

(s,t)∈T

(z − z0)s

s!

(w − w0)
t

t!

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

(15)

because this is the Taylor series expansion of P , using (10), about (z0, w0)
truncated so that no terms with (z− z0)k(w−w0)

l such that k > s or l > t for
any (s, t) ∈ T contribute in accordance with (9). To consider singular points
the following derivative is also needed

∂P

∂z
=

∑
(s,t)∈T, s>0

(z − z0)s−1

(s− 1)!

(w − w0)
t

t!

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

. (16)

The following notation will be used for (s, t) ∈ T where #(T ) = k + 1,

T = {(s0, t0), (s1, t1), . . . (sk, tk)} (17)

where the s′s and t′s are non-negative integers and the s′s increase with the
subscript and t′s decrease with the subscript i.e.

q < r implies sq < sr and tq > tr, and s0 = 0 and tk = 0. (18)

It is also convenient to indroduce

Σ = {s0, s1 . . . sk}. (19)

Therefore from (18), 0 ∈ Σ and sk ∈ Σ later named n in the EA.
To answer the question of whether (15) has any singular points other than

(z0, w0), the Euclidean algorithm will be used with (15) and (16), regarding
these as polynomials in z − z0. At the first step (15) is divided by (16) just
considering the leading powers of z − z0. The first quotient and remainder
are obtained removing an overall factor w − w0, then (16) takes the place of
(15) and the the remainder takes the place of (16) and this is repeated until 0
is obtained. The previous remainder is the necessary and sufficient condition
under which both (15) and (16) hold i.e. one of the conditions for a singular
point other than when w = w0.
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1.1 Study of the general case where T = {(0, 2), (1, 1), (3, 0)}
1.1.1 Finding the singular points

This implies (15) takes the form

P (z, w) =
(w − w0)

2

2

∂2P

∂w2

∣∣∣∣
z0,w0

+ (z − z0)(w − w0)
∂2P

∂z∂w

∣∣∣∣
z0,w0

+

(z − z0)3

6

∂3P

∂z3

∣∣∣∣
z0,w0

(20)

from which follows

∂P

∂z
= (w − w0)

∂2P

∂z∂w

∣∣∣∣
z0,w0

+
(z − z0)2

2

∂3P

∂z3

∣∣∣∣
z0,w0

. (21)

Both the (20) and (21) individually equated to 0 show that if w = w0 then
z = z0 and conversly because the partial derivatives in (15) and (20) are all
non-zero. Eliminating the cubic term in z − z0 shows that because of (21)
equated to 0, (20) can be replaced by (22)

P − (z − z0)
3

∂P

∂z
=

(w − w0)
2

2

∂2P

∂w2

∣∣∣∣
z0,w0

+
2

3
(z− z0)(w−w0)

∂2P

∂z∂w

∣∣∣∣
z0,w0

(22)

When trying to find common solutions to (21) and (22) equated to 0 with
z 6= z0 (and therefore w 6= w0), w − w0 can be factored out giving

(w − w0)

2

∂2P

∂w2

∣∣∣∣
z0,w0

+
2

3
(z − z0)

∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (23)

so common solutions to (23) and (21) must be found. Eliminating the highest
powers of z − z0 and again taking out the w − w0 factor gives

z − z0 =
8

3

∂2P
∂z∂w

2
∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

∣∣
z0,w0

(24)

This combined with (23) gives

w − w0 = −32

9

∂2P
∂z∂w

3
∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

2
∣∣∣
z0,w0

(25)

Checking this solution ((24) and (25) which will be denoted by (z1, w1)) by
substituting it back shows that (20) and (21) are satisfied and the assumption
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that w 6= w0 is eliminating the other solution z = z0, w = w0. In a similar way
the common solution of P = ∂P

∂w
= 0 other than z = z0, w = w0 was obtained

by treating w − w0 as the variable giving

z − z0 = 3

∂2P
∂z∂w

2
∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

∣∣
z0,w0

(26)

w − w0 = −3

∂2P
∂z∂w

3
∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

2
∣∣∣
z0,w0

(27)

which will be denoted by (z2, w2). The similarity of these results is surprising
and gives

z1 − z0 = 23

32
(z2 − z0)

w1 − w0 = 25

33
(w2 − w0)

. (28)

The single singular point expected is obtained if ∂2P
∂z∂w

∣∣∣
z0,w0

= 0. This implies

that a non-zero value of the mixed second derivative gives rise to a pair of
singular points. In many cases algebraic functions have a singular point at
∞ that is easily overlooked. The simplest example is f(z) = 1/z that is
determined by P = zw − 1 = 0. The singular points are given by ∂P

∂z
= 0 i.e.

w = 0 or z =∞, and ∂P
∂w

= 0 i.e. z = 0.

1.1.2 Characterising these singular points

In order to determine the sets S (4) and T and the leading terms in the
expansion of w in terms of z for each singular point, derivatives will be needed
evaluated at (z1, w1) and (z2, w2) as well as at (z0, w0). Starting with the main
singular point (z0, w0), an expansion of the form

w − w0 =
∞∑
i=0

ai(z − z0)ri . . . (29)

will be sought. The terms will be in decreasing order of significance i.e. ri
increases as i increases, and r0 > 0.

For (z1, w1) from (21), the terms cancel giving

∂P

∂z

∣∣∣∣
z1,w1

= 0 (30)

and
∂2P

∂z∂w
=

∂2P

∂z∂w

∣∣∣∣
z0,w0

6= 0 (31)
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and
∂2P

∂z2
= (z − z0)

∂3P

∂z3

∣∣∣∣
z0,w0

6= 0, (32)

and from (20)

∂P

∂w
= (w − w0)

∂2P

∂w2

∣∣∣∣
z0,w0

+ (z − z0)
∂2P

∂z∂w

∣∣∣∣
z0,w0

(33)

which at (z1, w1) becomes

8

9

∂2P
∂z∂w

3
∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

∣∣
z0,w0

6= 0. (34)

Therefore for (z1, w1), T = {(0, 1), (2, 0)} and S = {(0, 0), (1, 0)} and the
leading term in the expansion of w − w1 is

w − w1 = − 9

16

∂3P
∂z3

∂2P
∂w2

∣∣∣
z0,w0

∂2P
∂z∂w

2
∣∣∣
z0,w0

(z − z1)2. (35)

For (z2, w2), (33) implies

∂2P

∂w2
=
∂2P

∂w2

∣∣∣∣
z0,w0

6= 0, (36)

and (31), and (21) at (z2, w2) becomes

3

2

∂2P
∂z∂w

∣∣∣
z0,w0

∂3P
∂z3

∣∣
z0,w0

∂2P
∂w2

2
∣∣∣
z0,w0

6= 0 (37)

so S = {(0, 0), (0, 1)} so no extra derivatives for either singular point are zero.
Equation (20) is quadratic for w and so can be solved for w in terms of

z. Write (20) as A(w − w0)
2 + B(w − w0) + C = 0 where A = 1

2
∂2P
∂w2

∣∣∣
z0,w0

,

B = (z − z0) ∂2P
∂z∂w

∣∣∣
z0,w0

and C = (z−z0)3
6

∂2P
∂z3

∣∣∣
z0,w0

. Writing (20) as a quadratic

for w alone shows that the descriminant is still B2 − 4AC and the solution is

w = w0+

(z0 − z)

[
∂2P
∂z∂w

∣∣∣
z0,w0

+

(
∂2P
∂z∂w

2
∣∣∣
z0,w0

− 1
3
(z − z0) ∂2P

∂w2

∣∣∣
z0,w0

∂3P
∂z3

∣∣∣
z0,w0

)1/2
]

∂2P
∂w2

∣∣
z0,w0

.

(38)
To check this, (24) and one of (38) is in agreement with (25), and (26) and
(38) implies (27).
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1.1.3 Developing the asymptotic series about a singular point

Next a series expansion of the form

w − w0 =
∞∑
i≥0

ai(z − z0)ri (39)

will be developed for the singular point at (z0, w0) where ai 6= 0 and the terms
are ordered so that i < j implies ri < rj. These conditions insure that the
terms are in decreasing order of significance for values of z close to z0. First
substitute (39) into (20) giving

1

2

∑
i≥0

∑
j≥0

aiaj(z − z0)ri+rj
∂2P

∂w2

∣∣∣∣
z0,w0

+
∑
k≥0

ak(z − z0)rk+1 ∂2P

∂z∂w

∣∣∣∣
z0,w0

+
(z − z0)3

6

∂3P

∂z3

∣∣∣∣
z0,w0

= 0

. (40)

Therefore for each power of z−z0 appearing in (40), the coefficients must total
to zero. Although the ri have not yet been determined, this is possible with
the following strategy. The most significant i.e. lowest order terms in each of
the 3 expressions resulting from the 3 terms in (20) must each be cancelled
by terms (not necessarily the lowest order) from another of those expressions.
Working back from any term that cancels another to the most significant term
in the set and which cancels it etc. the first terms to be considered are the
most significant terms the whole of (40) which must cancel in pairs (or threes
etc.). To do this, the powers of z − z0 in the leading terms from the sets of
terms derived from (20) are tested for equality in every pairwise combination
and cancellation requires 2 or more of these to be equal and smaller than any
of the other powers of z − z0 in the set of other leading terms. This could
happen in more than one way. If this condition can be satisfied, then there is
an equation to be satisfied ensuring cancellation of these terms occurs. Then
this is repeated with the remaining terms of (40) etc. to determine all the
coefficients ai and ri.

The general procedure is as follows, substitute (39) into (15) giving

P (z, w) =
∑

(s,t)∈T

(z − z0)s

s!

(∑
i≥0 ai(z − z0)ri

)t
t!

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

= 0 (41)

For each term in the outer sum, the most significant is with the power of
(z − z0) equal to tr0 + s and with coefficient

at0
s!t!

∂s+tP

∂zs∂wt

∣∣∣∣
z0,w0

. (42)
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The condition for cancellation of a pair of terms requires t0r0 + s0 = t1r0 + s1
giving r0 = s1−s0

t0−t1 and the set of all lowest (most significant) powers of z − z0
in the terms in the outer sum of (41) is then{

tq

(
s1 − s0
t0 − t1

)
+ sq

}
(43)

for all q ∈ Σ. So the condition that none of these powers is more significant
than those cancelled is

min ({tqr0 + sq} q ∈ Σ) = t0r0 + s0. (44)

The exponent r0 must be chosen such that (s0, t0) and (s1, t1) satisfy this.
This has a pleasing geometrical interpretation. Consider lines of constant

tr0 + s plotted on the graph of all the points in T . Then the function tr0 + s
has the property that, because r0 > 0, all points above this line have tr0 + s
greater than its value on the line and (44) requires that all the points in T are
above the line joining (s0, t0) and (s1, t1). Thus all such pairs of points in T
can be read off directly from the plot of T and the number and all the possible
values of r0 can be read off from the graph of the points of T as the negative
of the slopes of these lines (or their reciprocals depending on which way T
is plotted). This characterises the singular point as a multiple intersection of
surfaces with different values of r0.

Carrying this out for (40) shows that the leading terms have powers of
z − z0 equal to 2r0,r0 + 1 and 3 and cancellation requires at least two of these
to be equal, so equating all possible combinations gives

• 2r0 = r0 + 1 ⇒ r0 = 1, and both sides are equal to 2 and the other
leading term has 3, so the leading terms can be cancelled.

• 2r0 = 3 ⇒ r0 = 3/2. Both sides of the equation are 3 and the other
leading term has index r0 + 1 = 5/2 which is more significant so this
more significant term could not be cancelled subsequently therefore this
value of r0 cannot be used.

• r0 + 1 = 3⇒ r0 = 2, and the other leading exponent is 2r0 = 4 which is
less significant than these and could be cancelled subsequently.

For r0 = 1, the cancellation of the leading terms requires

1

2
a20

∂2P

∂w2

∣∣∣∣
z0,w0

+ a0
∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (45)

from which the non-zero solution is

a0 =
−2 ∂2P

∂z∂w

∣∣∣
z0,w0

∂2P
∂w2

∣∣
z0,w0

(46)



Analytic Functions 9

The remaining terms in (40) are

1

2

∑
i≥0

∑
j≥0

i+j≥1

aiaj(z − z0)ri+rj
∂2P

∂w2

∣∣∣∣
z0,w0

+
∑
k≥1

ak(z − z0)rk+1 ∂2P

∂z∂w

∣∣∣∣
z0,w0

+
(z − z0)3

6

∂3P

∂z3

∣∣∣∣
z0,w0

= 0

. (47)

The most significant terms are now{
a0a1(z − z0)1+r1

∂2P

∂w2

∣∣∣∣
z0,w0

, a1(z − z0)1+r1
∂2P

∂z∂w

∣∣∣∣
z0,w0

,
(z − z0)3

6

∂3P

∂z3

∣∣∣∣
z0,w0

}
(48)

The next possible cancellation is for index 1 + r1 and requires

a0a1
∂2P
∂w2

∣∣∣
z0,w0

+a1
∂2P
∂z∂w

∣∣∣
z0,w0

= 0 which leads either to a1 = 0 which is excluded

or

a0
∂2P

∂w2

∣∣∣∣
z0,w0

+
∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0. (49)

Combining this with (46) gives ∂2P
∂z∂w

∣∣∣
z0,w0

= 0 contradicting (31). The next

case is given by 1 + r1 = 3⇒ r1 = 2 and the condition for cancellation is

a0a1
∂2P

∂w2

∣∣∣∣
z0,w0

+ a1
∂2P

∂z∂w

∣∣∣∣
z0,w0

+
1

6

∂3P

∂z3

∣∣∣∣
z0,w0

= 0 (50)

from which

a1 =
1

6

∂3P
∂z3

∂2P
∂z∂w

∣∣∣∣∣
z0,w0

(51)

and (47) now becomes

1

2

∑
i≥0

∑
j≥0

i+j≥2

aiaj(z − z0)ri+rj
∂2P

∂w2

∣∣∣∣
z0,w0

+
∑
k≥2

ak(z − z0)rk+1 ∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0. (52)

Now the most significant remaining terms are(
a0a2(z − z0)1+r2 +

1

2
a21(z − z0)4

)
∂2P

∂w2

∣∣∣∣
z0,w0

+a2(z−z0)1+r2
∂2P

∂z∂w

∣∣∣∣
z0,w0

(53)

If 1 + r2 < 4, the two terms with that power of z − z0 must cancel giving

a0a2
∂2P

∂w2

∣∣∣∣
z0,w0

+ a2
∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (54)
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and using (46) and dividing by a2 6= 0 gives ∂2P
∂z∂w

∣∣∣
z0,w0

= 0 which is not

possible. Clearly it is not possible for 4 < 1 + r2 in (53) because that would
require a1 = 0, and the only other possibility is 1+r2 = 4 and the cancellation
of all the terms in (53) simplifies to

a2 =
1

72

(
∂3P

∂z3

)2(
∂2P

∂w2

)
(
∂2P

∂z∂w

)3

∣∣∣∣∣∣∣∣∣
z0,w0

(55)

The next most significant terms now remaining are

[
a0a3(z − z0)1+r3 + a1a2(z − z0)5

] ∂2P
∂w2

∣∣∣∣
z0,w0

+ a3(z− z0)1+r3
∂2P

∂z∂w

∣∣∣∣
z0,w0

(56)

If 1 + r3 < 5, the condition that most significant terms are now cancelling is

a0a3
∂2P

∂w2

∣∣∣∣
z0,w0

+ a3
∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (57)

which when divided by a3 and using (46) again contradicts (33). If 5 < 1 + r3
the cancellation of the leading term now gives a1a2 = 0 which is not possible.
Therefore 1 + r3 = 5 and the cancellation of all the leading terms simplifies to

a3 =
1

24.33

(
∂3P

∂z3

)3(
∂2P

∂w2

)2

(
∂2P

∂z∂w

)5

∣∣∣∣∣∣∣∣∣
z0,w0

(58)

This can be continued by induction with the assumptions that

1

2

∑
i≥0

∑
j≥0

i+j≥l

aiaj(z − z0)ri+rj
∂2P

∂w2

∣∣∣∣
z0,w0

+
∑
k≥l

ak(z − z0)rk+1 ∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (59)

is what remains of (40) and

ri = i+ 1 for 0 ≤ i ≤ l − 1 (60)

and that for 1 ≤ i ≤ l − 1

ai =

∂3P

∂z3

∣∣∣∣i
z0,w0

∂2P

∂w2

∣∣∣∣i−1
z0,w0

∂2P

∂z∂w

∣∣∣∣2i−1
z0,w0

βi (61)
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where the numbers βi > 0 for all i ≥ 1. The first step of the induction
argument is to note that the most significant terms from each sum in (59) are

a0al(z − z0)1+rl
∂2P

∂w2

∣∣∣∣
z0,w0

1

2
aial−i(z − z0)l+2 ∂

2P

∂w2

∣∣∣∣
z0,w0

for 1 ≤ i ≤ l − 1

al(z − z0)1+rl
∂2P

∂z∂w

∣∣∣∣
z0,w0

(62)

because from (60) it follows that the powers of z − z0 for i+ j = l in the first
double sum of (59) are 1+rl and l+2 (for (i, j) = (1, l−1), (2, l−2), . . . (l−1, 1)
ri + rj = i+ j + 2 = l+ 2 and if (i, j) = (0, l) or (l, 0) ri + rj = 1 + rl) and all
other indices in that term are greater than either one (or both) of these values.
The smallest index is the smaller of l + 2 and rl + 1. Suppose the smallest
index is rl + 1 < l + 2 then the terms with exponent rl + 1 cancel out. This
requires

a0al
∂2P

∂w2

∣∣∣∣
z0,w0

+ al
∂2P

∂z∂w

∣∣∣∣
z0,w0

= 0 (63)

and because al 6= 0, this leads to (49) and to a contradiction. The next case is
when the smallest index is l+ 2 < rl + 1 then the terms giving exponent l+ 2
cancel out. This gives

∑l−1
i=1 aial−i = 0 which is not possible because, using

(61),

l−1∑
i=1

aial−i =

∂3P

∂z3

∣∣∣∣l
z0,w0

∂2P

∂w2

∣∣∣∣l−2
z0,w0

∂2P

∂z∂w

∣∣∣∣2l−2
z0,w0

l−1∑
i=1

βiβl−i (64)

and the last sum is > 0. Next suppose rl + 1 = l + 2 i.e. rl = l + 1 and al is
determined by

a0al
∂2P

∂w2

∣∣∣∣
z0,w0

+ al
∂2P

∂z∂w

∣∣∣∣
z0,w0

+
1

2

l−1∑
i=1

aial−i
∂2P

∂w2

∣∣∣∣
z0,w0

= 0. (65)

which can be solved for al giving

al =

∂3P

∂z3

∣∣∣∣l
z0,w0

∂2P

∂w2

∣∣∣∣l−1
z0,w0

∂2P

∂z∂w

∣∣∣∣2l−1
z0,w0

βl (66)
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where

βl =
1

2

l−1∑
i=1

βiβl−i > 0. (67)

This completes the induction proof and determines all the values of al in the
asymptotic expansion of (20) at the point (z0, w0) for the case r0 = 1. This is
an example of how the analysis of the leading order terms is extended to all
orders.

2 The Euclidean Algorithm for polynomials

A single step in this general process is as follows. The polynomial A =∑n
i=0 z

iai is divided by the polynomial B =
∑n−1

i=0 z
ibi. Just considering

the leading terms gives the quotient zan
bn−1

which when multiplied by B gives
an

bn−1

∑n−1
i=0 z

i+1bi which when subtracted from A gives the first remainder∑n−1
i=0 z

i
(
ai − anbi−1

bn−1

)
where b−1 = 0. Therefore the leading terms remain-

ing give the final part of the quotient as 1
bn−1

(
an−1 − anbn−2

bn−1

)
so the complete

quotient Q = z an
bb−1

+ an−1

bn−1
− anbn−2

b2n−1
and the final remainder is

R =
n−2∑
i=0

zi
[
an
bn−1

(
bn−2bi
bn−1

− bi−1
)
− bian−1

bn−1
+ ai

]
. (68)

This can be checked by verifying that A = BQ+R.
The complete process, the Euclidean Algorithm, consists of replacing the

equations {
A = 0
B = 0

(69)

by the equivalent system {
B = 0
R = 0

(70)

and repeating this process with A replaced by B and B replaced by R until R
has degree 0 in which case the final R is identically zero if and only if (69) is
consistent and its solution is then obtained from the final B = 0.

There is a generalisation to the above which happens when the order of
the divisor polynomial is not related to that of the dividand. Suppose A =∑n

i=0 z
iai and B =

∑m
i=0 z

ibi and m ≤ n. It is required to simplify the system{
A = 0
B = 0

(71)
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i.e. determine if there are any common solutions, and if so find the lowest order
polynomial equation giving them all. Write the quotient as Q =

∑n−m
j=0 zjαj

then the general relationship A = BQ+R can be written as

n∑
i=0

ziai =

(
m∑
i=0

zibi

)(
n−m∑
j=0

zjαj

)
+

m−1∑
i=0

zici (72)

where the remainder R is the last sum in (72). This can be written as

n∑
l=0

zl

 ∑
(i,j):i+j=l

αjbi

+
m−1∑
i=0

zici =
n∑

i=0

ziai (73)

The range of the inner sum using j as the discrete variable is given by j = l− i
where

0 ≤ j ≤ n−m (74)

and 0 ≤ i ≤ m which after eliminating i is

l −m ≤ j ≤ l. (75)

Combining (74) and (75) gives max(0, l −m) ≤ j ≤ min(l, n−m). This leads
to two dichotomies, l < m and the comparison of l with n − m (it does not
matter which case l = n−m is included with), therefore the distinct ranges of
values of l of interest are

{0 ≤ l < m,m ≤ l ≤ n−m,n−m < l ≤ n} (76)

when m ≤ n−m and

{0 ≤ l < n−m,n−m ≤ l < m,m ≤ l ≤ n} (77)

when m > n−m, so this gives 6 cases to be considered. In general, equating
powers of z gives

al = cl +
∑
j

αjbl−j. (78)

This is to be solved for αj and cl, given ai and bi where cl = 0 if l ≥ m, and the
specific cases can follow when the limits on j in the 6 cases have been written
down. Consider first the case m ≤ n−m. Then

al = cl +
l∑

j=0

αjbl−j for 0 ≤ l < m. (79)

al =
l∑

j=l−m

αjbl−j for m ≤ l ≤ n−m. (80)
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al =
n−m∑
j=l−m

αjbl−j for n−m < l ≤ n. (81)

The order in which these equations are solved for each variable can now be
stated. The key is to look for (i) the first variable to be solved for which is
αn−m from the l = n case of (81) and (2) the new variable included as l changes
by 1, noting that each new variable then depends only on previous variables
that have been found. This leads to the order

αn−m, αn−m−1, . . . αn−2m+1, αn−2m, . . . α0, cm−1, . . . c0 (82)

for l in decreasing order from n to 0 in (79),(80), and (81), apart from the
fact that (81) could be solved in any order for the cl. For convenience these
equations are listed in order, solved for the variable of interest, followed by
combining cases (80) and (81) as follows:

αl−m =
al −

∑min(l,n−m)
j=l−m+1 αjbl−j

bm
for l = n, n− 1, . . .m (83)

cl = al −
l∑

j=0

αjbl−j for 0 ≤ l < m (84)

Similarly for the case m > n−m

αl−m =
al −

∑n−m
j=l−m+1 αjbl−j

bm
for l = n, n− 1, . . .m (85)

and

cl = al −
min(l,n−m)∑

j=0

αjbl−j for 0 ≤ l < m (86)

In each case the first value to be solved for is for l = n and gives αn−m = an
bm
.

It is easy to check that these cases combine to give simply

αl−m =
al −

∑min(l,n−m)
j=l−m+1 αjbl−j

bm
for l = n, n− 1, . . .m (87)

cl = al −
min(l,n−m)∑

j=0

αjbl−j for 0 ≤ l < m (88)

regardless of which is the larger of m and n−m. This completes a single step
of the Euclidean Algorithm described above.
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3 Applying the Euclidean algorithm to bivari-

ate polynomials

Suppose A and B above are polynomials in w as well as z. This implies that
the coefficients above are all polynomials in w. The goal is again to determine
whether or not the system is consistent and to simplify the system as much as
possible. Then the above argument will lead in a single cycle to R given by
(86) where (85) the a′s and b′s are polynomials in w. Thus the α′s and the c′s
are all of the form of one polynomial in w divided by another. Because R is
equated to zero, the fraction can be cleared so that R = 0 can be expressed as
another bivariate polynomial equated to 0, and importantly of degree m − 1
in z. Therefore the cycle can be repeated as above until the degree of R is 0
in z, which is a polynomial in w only equated to 0. This is the consistency
condition and determines the value(s) of w that are possible solutions. Then
for each such w, the other equation generated by the algorithm is a polynomial
in z only that determines the set of possible values of z consistent with that
value of w. The results of this algorithm are unique, but the elimination could
have been done the other way round by eliminating w first, or indeed the roles
of z and w could be exchanged at any cycle of the algorithm, and must give
equivalent results.

4 Applying the Euclidean Algorithm to the

search for singular points

From (15) and (16) equated to zero, having z − z0 in place of z in (72),

ai =


0 if i /∈ Σ
vq
sq!

if i = sq for some q
, (89)

bi =


0 if i+ 1 /∈ Σ

vq
(sq − 1)!

if i+ 1 = sq for some q
(90)

where

dq =
∂sq+tqP

∂zsq∂wtq

∣∣∣∣
z0,w0

(91)

and

vq =
(w − w0)

tqdq
tq!

. (92)
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Here q is unique (if it exists) for a given value of i. Applying the first cycle of
Euclidean Algorithm gives, with m = n− 1, and l = n = sk,

α1 =
an
bn−1

=
ask
bsk−1

=
1
sk!
vk

1
(sk−1)!

vk
=

1

sk
. (93)

Then with l = m

α0 =
an−1 −

∑min(n−1,1)
j=1 αjbn−1−j

bn−1
=
an−1 − α1bn−2

bn−1
(94)

provided n > 1. The condition needed i.e. bn−1 6= 0 is n ∈ Σ because (90)
is correct because n = sk so q = k. The conditions in an−1 and bn−2 are
equivalent, so the expressions in α0 can be combined to give

α0 =


0 if n− 1 /∈ Σ

vq
vk

(sk − 1)!

(sq − 1)!

(
1

sq
− 1

sk

)
if n− 1 = sq

 . (95)

Then substituting for ai, bi and α1 gives

ci =


0 if i /∈ Σ

vq1

(
1

sq1 !
− 1

sk(sq1 − 1)!

)
if i = sq1


−


0 if i+ 1 /∈ Σ

α0
vq2

(sq2 − 1)!
if i+ 1 = sq2

 for 0 ≤ i < m.

(96)

If n− 1 ∈ Σ then n− 1 = sq for some q. Then q = k leads to a contradiction
because sk = n so q 6= k and α0 6= 0. Conversly α0 6= 0 implies n− 1 ∈ Σ. For
applying the EA to

If α0 = 0 the second expression in braces in (96) vanishes, then the con-
dition that ci = 0, which is the condition of termination of the Euclidean
algorithm(EA), reduces to 1

sq1 !
= 1

sk(sq1−1)!
and to sq1 = sk, so q1 = k and this

can only work for i = sq1 = n which is excluded from (96) therefore the Eu-
clidean algorithm cannot terminate under this condition. These results show
that whether α0 is 0 or not, is the first question to ask in the analysis of an
example of (15).

If for any i satisfying 0 ≤ i < m we have i ∈ Σ and i + 1 /∈ Σ then from

(96) ci = vq1

(
1

sq1 !
− 1

sk(sq1−1)!

)
6= 0 because the bracket is zero only if q1 = k,

and the latter is already ruled out because sq1 = i and sk = n = m + 1.
Therefore if termination occurs after one cycle of the Euclidean algorithm
then Σ = {0, 1, . . . n} applies to the data input to this algorithm. Also, the
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termination condition then reduces to vq1(1− i/n) = α0vq2 , where i = sq1 = q1
and i+ 1 = sq2 = q2, and to vi(1− i/n) = α0vi+1 for 0 ≤ i < m.

The overall result so far is that there are 3 cases with the following condi-
tions applying to the input arguments to one cycle of the EA.

Case 1: EA terminates and α0 6= 0, and Σ = {0, 1, 2 . . . , n} and vi+1 =
vi(1− i/n)/α0 for 0 ≤ i < m− 1.

Case 2: α0 6= 0, n− 1 ∈ Σ and the EA does not terminate.
Case 3: α0 = 0 and the EA does not terminate, and n− 1 /∈ Σ.
For applying the EA to (15) and(16), this can also be done using w − w0

as the variable instead of z − z0.
Consider the EA applied to bivariate polynomials in z and w. Does TA and

TB uniquely determine TR for one cycle? Characterise this relationship. Does
the EA done to completion give a unique result regardless of which variable is
used at any stage to take the part of z in the EA?

5 Relaxing the condition of the polynomial

being minimal

Suppose now that there are q singular points, and each has associated with it S

and T as described above with those properties, and the values of ∂i+jP
∂zi∂wj

∣∣∣
zr,wr

for 1 ≤
r ≤ q. The question now is what are terms to be included in the polynomial
P . Introducing the sets Sp and Tp with the same properties as S and T above,
let

P (z, w) =
∑∑

(k,l)∈Sp∪Tp

aklz
kwl = 0 (97)

implicitly define the multivalued analytic function w(z) to be constructed hav-
ing these properties at this set of singular points and no others. The logic of
the previous section then follows leading to

∂i+jP

∂zi∂wj

∣∣∣∣
zr,wr

=
∑∑

(k,l)∈Sr∪Tr

k≥i, l≥j

akl

(
k!l!zk−ir wl−j

r

(k − i)!(l − j)!

)
for all (i, j) ∈ Sr ∪ Tr
for 1 ≤ r ≤ q

.

(98)
This is a system of equations for the akl that does not have the nice properties
that occurred in the case of a single singular point, but it can be brought
into this form by repeated elimination of variables, though not uniquely, by
different choices of Sp.

The system of equations (98) can be represented on a grid according to
the pair (i, j) at which nij is the number of such equations. Each of those
equations involves only the variables akl where k ≥ i and l ≥ j. The point
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(i, j) also represents the term in the polynomial P involving aij which is yet
to be constructed because Sp and Tp have not yet been determined. If nij > 1,
one of those equations (call it e) can have aij eliminated from it. Then using
one of the equations for (i+ 1, j), e can have ai+1 j eliminated from it, likewise
for ai+2 j,ai+3 j etc. There can be no gap in the sequence of such eliminating
equations because all the sets Sr all satisfy (4). The result of this is that e is
now an equation involving only aij for k ≥ i and l ≥ j + 1, thus it can move
up the grid by one place in the direction of increasing j. The same argument
can of course be made with i and j interchanged.

One approach to the elimination procedure is as follows: make moves from
e having i = 0 (if necesary) in order to obtain {(0, j) : n0j 6= 0} = {Sp : i = 0}.
All these moves are incrementing j by 1. If this impossible the polynomial
with Sp cannot be constructed because e can never move down in i. This
should be done with the minimum number of moves so that all the values of
j remain as small as possible to maximise the chance of success. Now make
single moves for each e at (0, j) such that n0j > 1 in the order of increasing
j, then all the non-zero values of n0j are 1. The condition (4) in the grid will
not be altered by these moves. If for any resulting point (i, j) for e there is
no corresponding term in P , it must be added to avoid the equations being
overdetermined and there being no solution. Now do the same with i and j
reversed. Now the whole procedure can be repeated for the column j ≥ i = 1
then for the row i ≥ j = 1 etc. in order to obtain the system such that
{(1, j) : n1j 6= 0} = {Sp : i = 1} and {(i, 1) : ni1 6= 0} = {Sp : j = 1} etc.

The result of this is the original system (98) expressed in the form (12) or
a proof of its impossibility.

By repeating these moves starting from (98) in all possible ways and keeping
track of the numbers of equations at each grid point at each step until the
resulting grid has no numbers nij > 1, a set of possible values of Sp = {(i, j) :
nij = 1} can be obtained, each with its corresponding value of Tp.

6 Extensions

In either of equations (??) or (??) if the functions g1() and g2() are not be
single-valued (such as linear or bilinear functions) they could expressed like
f() in terms of single-valued functions. This suggests a recursive approach.

This would generate a set of types of behaviour at single singular points.
In general for an analytic function there would be many such singular points,
and the behaviours thus described would be approximate or asymptotic being
modified by the effect of the other singular points. This is in analogy with the
behaviour of algebraic functions. Also it would be very desirable to be able
to extract the above types of asymptotic behaviours from analytic functions
defined indirectly eg as integrals or solutions of differential or integral equa-
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tions. This could probably be done in analogy with ∆w = a∆zr for algebraic
functions by replacing this with other relationships for which g1() and g2() can
be found and ∆z = 0 ⇒ ∆w = 0 e.g. ∆w = a(∆z)r1(ln ∆z)r2 Or the general
problem: Given f(), directly or indirectly, with a singular point at z0 say, find
the functions g1() and g2() satisfying (??) or (??) or other functions defining
them, for z close to z0. Note that (??) can have z replaced by z0 to generate
an equation of the form (??) when analysing in the neighbourhood of z0.

7 More general classes of analytic functions

Because of the elimination theorem, any algebraic function can be written with
the use of redundant variables in the following form

Pi(z, w, x1, . . . xn−1) = 0 for 0 ≤ i ≤ n (99)

where the Pi are multivariate polynomials and the (complex) variables xi are
to be eliminated from the system resulting in a single equation of the form
P (z, w) = 0. In few examples that I have studied, actually carrying out the
stated elimination is extremely complicated and as such it may frequently
be more convenient to manipulate the function in the form (99) rather than
attempt the actual elimination to the form P (z, w) = 0 let alone the explicit
algebraic formula (if it exists), using implicit function methods.

Furthermore this form suggests the extension to functions w(z) defined by
the following elimination problem where the Pi are polynomial functions of all
their arguments:

Pi(z, w, x1, . . . xn−1, e
x1 , . . . exn−1) = 0 for 0 ≤ i ≤ n (100)

may be an interesting extension of algebraic functions, regardless of whether
or not such an elimination can xbe done explicitly. A simple example of this is
the nth iterate of the exponential function which can be written in this form
as

x1 − exp(z) = 0
x2 − exp(x1) = 0
. . .
xn−1 − exp(xn−2) = 0
w − exp(xn−1) = 0

(101)

but not in this form for a smaller value of n showing that as the depth n of the
system increases, more functions are included in the form (100). The depth
could be defined as zero when w is expressed explicitly in terms of z by a
formula.
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8 Deriving the conditions for singular points

in terms of derivatives of the Pi

Returning to a simpler case, suppose a analytic function w(z) is expressed not
merely implicitly by

P (z, w) = 0 (102)

but even more implicitly by {
P1(z, w, x) = 0
P2(z, w, x) = 0

(103)

from which x is to be eliminated. The question is if the analytic function is
defined by the form (103) how can these defining equations for singular points
be expressed? One way to approach this is to write the general equations
(to first order) relating the infinitesimal changes in the variables in the two
different ways of expressing this relationship, and eliminate ∆x from the system
arising from (??) and compare it with the relationship between ∆z and ∆w
only, arising from (??). This gives

∂P

∂z
∆z +

∂P

∂w
∆w = 0 (104)

and
∂P1

∂z
∆z +

∂P1

∂w
∆w +

∂P1

∂x
∆x = 0

∂P2

∂z
∆z +

∂P2

∂w
∆w +

∂P2

∂x
∆x = 0

(105)

from which elimination of ∆x gives

∆z

(
∂P2

∂z
− ∂P1

∂z

∂P2

∂x
∂P1

∂x

)
+ ∆w

(
∂P2

∂w
− ∂P1

∂w

∂P2

∂x
∂P1

∂x

)
= 0 (106)

and comparing (104) with (106) gives

∂P

∂z

/∣∣∣∣∂(P1, P2)

∂(x, z)

∣∣∣∣ =
∂P

∂w

/∣∣∣∣∂(P1, P2)

∂(x,w)

∣∣∣∣ (107)

where the denominators are determinants of the Jacobian matrices of partial
derivatives, and (1) and (2) can be represented by∣∣∣∣∂(P1, P2)

∂(x, z)

∣∣∣∣ = 0 (108)

and ∣∣∣∣∂(P1, P2)

∂(x,w)

∣∣∣∣ = 0 (109)
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respectively. Note that neither of these Jacobian determinants can go to in-
finity because the Pi and their derivatives, being polynomials, are all finite at
finite values of z and w, hence finite x. Extending this argument to higher
derivative conditions for singular points proved to be a little tricky.

Adding in the second order terms in the relationships amongst the infinites-
imal changes to the variables, which are the leading terms omitted from (104)
in the Taylor expansion of P , gives

∂P

∂z
∆z +

∂P

∂w
∆w +

∂2P

∂z2
∆z2

2
+

∂2P

∂z∂w
∆z∆w +

∂2P

∂w2

∆w2

2
= 0. (110)

Likewise for (105) in the Taylor expansion of P1 and P2:

∂Pi

∂z
∆z +

∂Pi

∂w
∆w +

∂Pi

∂x
∆x+

∂2Pi

∂z2
∆z2

2
+

∂2Pi

∂z∂w
∆z∆w +

∂2Pi

∂z∂x
∆z∆x+

∂2Pi

∂w∂x
∆w∆x+

∂2Pi

∂w2

∆w2

2
+
∂2Pi

∂x2
∆x2

2
= 0 for i ∈ {1, 2}

.

(111)
In this pair of quadratic equations for ∆x, consistency requires that the linear
combination of these that is linear in ∆x is also satisfied. This can be written
as

∆x = −
(

1

2
∆z2a+ ∆z∆wB +

1

2
∆w2C + F∆z +G∆w

)/
(∆zD + ∆wE +H)

(112)
where

A =

∣∣∣∣∣∣∣∣
∂2P1

∂x2
∂2P2

∂x2

∂2P1

∂z2
∂2P2

∂z2

∣∣∣∣∣∣∣∣ B =

∣∣∣∣∣∣∣∣
∂2P1

∂x2
∂2P2

∂x2

∂2P1

∂z∂w

∂2P2

∂z∂w

∣∣∣∣∣∣∣∣ C =

∣∣∣∣∣∣∣∣
∂2P1

∂x2
∂2P2

∂x2

∂2P1

∂w2

∂2P2

∂w2

∣∣∣∣∣∣∣∣
D =

∣∣∣∣∣∣∣∣
∂2P1

∂x2
∂2P2

∂x2

∂2P1

∂z∂x

∂2P2

∂z∂x

∣∣∣∣∣∣∣∣ E =

∣∣∣∣∣∣∣∣
∂2P1

∂x2
∂2P2

∂x2

∂2P1

∂w∂x

∂2P2

∂w∂x

∣∣∣∣∣∣∣∣ F =

∣∣∣∣∣∣∣∣
∂P1

∂z

∂P2

∂z

∂2P1

∂x2
∂2P2

∂x2

∣∣∣∣∣∣∣∣
G =

∣∣∣∣∣∣∣∣
∂P1

∂w

∂P2

∂w

∂2P1

∂x2
∂2P2

∂x2

∣∣∣∣∣∣∣∣ H =

∣∣∣∣∣∣∣∣
∂P1

∂x

∂P2

∂x

∂2P1

∂x2
∂2P2

∂x2

∣∣∣∣∣∣∣∣
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Comparing (112) with (111) from which it was derived, it is clear that (112)
can be cancelled down to an expression linear in the differentials otherwise
back substitution would lead to expressions involving 4th powers of ∆z. It is
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straightforward to identify the result as

∆x = − A

2D
∆z − C

2E
∆w (114)

using the highest power terms in the numerator of (112). Substituting this
back into say the first of (111) (the second would give the an equivalent result
because the the consistency between them, (112), has already been taken into
account) gives a result of the form (110) and comparing the coefficients of the
differentials in these equations shows that the following relations have to be
satisfied:

∂2P

∂z2
∝ ∂2P1

∂z2
+

A2

4D2

∂2P1

∂x2
− A

2D

∂2P1

∂z∂x

∂2P

∂w2
∝ ∂2P1

∂w2
+

C2

4E2

∂2P1

∂x2
− C

2E

∂2P1

∂w∂x

∂2P

∂z∂w
∝ ∂2P1

∂z∂w
+

AC

4DE

∂2P1

∂x2
− A

2D

∂2P1

∂w∂x
− C

2E

∂2P1

∂z∂x
∂P

∂z
∝ − A

2D

∂P1

∂x
∂P

∂w
∝ − C

2E

∂P1

∂x

(115)

where the constant of proportionality is the same for each case.
These equations are very complicated, and even more so when higher order

terms are considered, so it it might be better when dealing with examples to
do the eliminations to obtain ∆x and (110) to obtain the coefficients which
are the derivatives of P rather than using the general formulae. The suggested
procedure is this: first write down the derivatives of Pi to the order needed.
Do the elimination between the system (111) to obtain ∆x. Substitute this
back into one of (111) to obtain (110) and read off the derivatives of P needed.

How many derivatives of P are needed w.r.t. w and z? The point is to
obtain all the singular points so the search must start as follows:

• Find all the points where (1) ∂P/∂z = 0.

• Find all the points where (2) ∂P/∂w = 0. Then for the second order
derivatives:

• For each answer to (1), (1.1) find all points where also ∂2P/∂z2 = 0.

• For each answer to (2), (2.1) find all points where also ∂2P/∂w2 = 0.

• For each common answer to (1) and (2), (2.2) find all any points where
also ∂2P/∂z∂w = 0. Then for 3rd order derivatives:
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• For each answer to (1.1), find all points where also ∂3P/∂z3 = 0.

• For each common answer to (1.1) and (2.2) find all points where also
∂3P/∂z2∂w = 0.

• For each common answer to (2.1) and (2.2) find all points where also
∂3P/∂z∂w2 = 0.

• For each answer to (2.1), find all points where also ∂3P/∂w3 = 0. etc..

This could be continued indefinitely and ensures that the condition attached
to Equation (3) holds. The result of this search is the list of all the singular
points. The leading order non-zero derivatives for each such point must also
be found. The values of a and r in the leading order expression ∆w = a∆zr

can then be obtained [Nixon2013] for each singular point.
Given all the pairs of values of a and r for a singular point at (z0, w0) can

the leading order non-zero derivatives of P at (z0, w0) be obtained?
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