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Turing Machines

Abstract

Developments are here described in the analysis technique for non-
terminating Turing Machines (TM’s) that I described earlier. The main
idea is the introduction of IRR patterns i.e. constraints satisfied by
large sets of IRRs (Irreducible Regular Rules) and the logical relation-
ships between them as a result of the general method for deriving IRR’s
from others described in my earlier paper. These logical relationships
will be referred to as IGR’s (IRR Generating Rules). IGR’s have been
reduced to their minimal form in a way analogous to the way in which
regular rules were reduced to IRR’s by taking out symbol strings that
played no essential role. In the case of IGR’s these symbol strings (ac-
tually pairs) will be referred to as context pairs. A new version of my
computer program extending the previous analysis is described and is
freely available that generates these IGR’s up to a given length of IRR’s
that they generate. The results show repetition of the left hand halves
(Left IGR’s or LIGR’s) of IGR’s associated with different right hand
halves. Because the LIGR’s can be derived independently of the right
hand halves of IGR’s, this should be done separately and can be done
using the currently known IRR’s as previously described in my earlier
papers. The LIGR’s can be used to calculate all the IRR’s of a TM.
A procedure for the generation of all the LIGR’s for a TM has been
suggested and is expressed here by a detailed analysis of a TM though
not yet as computer code.

Mathematics Subject Classification: 68Q25

Keywords: Turing Machine (TM), Irreducible Regular Rule (IRR), IRR
Generating Rule (IGR), LIGR (Left IGR).

1 Introduction

I have done a lot of work on this since I last updated it and I decided to
update it now despite not being entirely consistent because some updates are
in progress. Main changes:

Table [94] was reorganised renumbering the LIGR’s, and the related text has
been consolidated to remove repetitions.

Table [I] shows that Table [94] is incomplete and so is Table [3]

Table |1 can be reorganised (Table [4)) in terms of LIGR’s and RIGR’s(Right
IGR’s).
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This document is a work in progress. As such it is incomplete and still has
errors and omissions. When brought to a state where I cannot easily find any
improvements it will form my next paper on Turing Machine analysis.

Section 2 is a quite dense summary of the previous methods that lays the
foundations of the developments to be described in this paper. Section 3 intro-
duces IRR patterns (IRRP’s) as sets of IGR’s conforming to the pattern. They
have some common symbols in the origin and the RHS of the IRR and allow
for any LHS. Section 4 introduces IGR’s in terms of IRRP’s and illustrates
the fact that IRR’s of any length can be derived from sequences of IGR’s by
a sequence of substitutions. In Section 5 the detailed description of an IGR is
given and proves the generation of IRR’s from IGR’s. A computer algorithm
is described for generating them all for a TM and its results are shown for
an example TM. In Section 6 a necessary condition in the relation “can be
followed by” for IGR’s is found. Further results are found for the set of IGR’s
that can follow a sequence of IGR’s following each other (i.e. substituted into
each other) hand calculation of which suggests a method for generating all of
them for a TM thugh this appears practically impossible for the example TM
beause of te large number of cases to be considered. In Section 7 left IGR’s
or LIGR’s are introduced because in section 6 the LHS and RHS of an IGR
can be developed independently. An algorithm is illustrated by example for
finding all the LIGR’s for a TM based on the above ideas and results.

A lot of material has been removed to 2017’s Notes on Turing Machines.
These notes are now mostly superseded, but there may be a little there that
is of use.

Comments are welcome. Please send them to john.h.nixon1@gmail.com

2 Basic definitions and summary of the exist-
ing method to generate the IRR’s for a TM

A configuration set (CS) for a TM is a set of complete configurations (tape
symbols with pointer position indicated, and the machine state of the TM)
such that the CS is specified by giving a finite set of symbols in a set of
contiguous pointer positions together with the machine state and such that
the pointer position is where one of the given symbols is given or adjacent to
one. In a CS all possible configurations that are consistent with the specified
symbols and machine state are included. The notation is the specified symbol
string with the pointer indicated by an underscore (it is just off the end of the
symbol string) or an underline and the machine state on the left. For example
with machine states 1,2,3, etc. and symbols lower case letters the following
are CSs: 2abca, 1_aabbcac. The length of the CS is the length of the symbol
string which is finite.
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A computation rule or rule is a pair of CS’s linked by — indicating the
forward direction of the computation. A reducible rule is one that has symbols
that play no part in the computation i.e. any extra symbols added on the left or
right of the strings at the left and right hand sides of a computation rule. From
the definitions of regular rules (RR) and irreducible regular rules (IRR) in [1],
any computation of the TM that ends with the pointer just off the end (i.e.
adjacent to a symbol at the end) of the string of symbols specified at the start
can be represented by RR’s chained together as a sequence of CS’s starting
with one of length 1, where for each step in the chain a new symbol is read at
a position where no symbol has yet been read at the pointer, thus the length
of the string of symbols increases by 1 for each RR unless a stationary cycle
occurs that ends such a sequence. All such CS’s are by definition reachable.
All single TM steps are RR’s. If the RR is of type LR or RL as designated
earlier (now the position of the pointer in the origin (see below) is included so
these are now RLR and LRL respectively) the pointer swaps ends at that step
of the chain and these RR’s are also irreducible RR’s (IRR’s) because if the
pointer swaps ends there are no redundant symbols i.e. the rule is irreducible.
There are also IRR’s that that don’t swap ends. If a CS called “origin” is
included with the LHS and RHS of the IRR it can be written in the triplet
form as origin — LHS — RHS for which the abbeviated form origin —— RHS
will be used if the LHS is not specified hence the changed designation of the
type of an IRR. An origin (there could be many for the same LHS) of an IRR
is a CS obtained by running the TM backwards starting from the LHS to a
point such that the pointer position is at the opposite end of the string from
where it is in the LHS.

If an RR is of type LRR or RLL it is related to an irreducible form (a
possibly shorter IRR which only involves the symbols passed by the pointer
during its execution) as follows. Suppose the RR is represented by m — n — o
where m < n < o and n + 1 = o where italics represent the corresponding
pointer positions for the CS’s in typewriter font. Then the RR has type LRR
because the start and end points of the i.e. the LHS and RHS have the pointer
at the right hand end of the string. The rule n — o can be represented as
n — p’ — o without any redundant symbols where m < p < n < o and
the primes indicate shortening of the strings by deleting the symbols below
position p i.e. pis the leftmost pointer position in the computation from n to
o. n = p holds if and only if n’ = p’ and n’ — 0’ is a single TM step. If n # p
the rule n" — p’ shows that p’ is reachable therefore n" — p’ — o represents
an IRR of type RLR, and of course the mirror image result applies to IRR’s
of type RLL.

In general let X be a member of IRR(n) i.e. the set of all IRR’s with CS’s
of length n. Then X can be represented as A — B — C where the pointer swaps
ends between A and B (thus this is either 1 — n or n — 1 and is referred to



4 John Nixon

as condition 1) to establish the reachability of B necessary for X to be an IRR.
There may be more than one such CS A for a single B and the set of all such
A will be denoted by 04(B) (the same as S(B) in [2]), the 1 referring to the
backward searching algorithm that terminates in condition 1 (see [2] section
2.2). Likewise if it terminates in condition 2 i.e. the pointer comes back to
where it was at the start of the backward search, the set of such endpoints
will be denoted as 0,(B), but these do not confer reachability and will not be
referred to as origins. If the pointer is at the right in A and at the left in B
then at C it can be at the left or right so that X must be represented as either
of the triplet forms n —+1 — 0 orn — 1 — n + 1 and having types RLL and
RLR respectively. Likewise if the pointer is at the left in A (the mirror image
forms), X must be represented by either of 1 - n - n+1or1 — n — 0,
having types LRR and LRL respectively.

If B is reachable but forward computaton from it leads to a CS that has
arisen before in this computation, this is an stationary cycle and the type of
the IRR is then of type LC or RC. If the reverse computation path from B leads
to a stationary cycle, then this cycle must include B to avoid a branch point
in the forward computation that would not then be unique. Thus likewise the
IRR is of type LC or RC.

From the definition of RR in the first paragraph of this section, if in the
backward search from the LHS of an IRR, the pointer again reaches the same
position it had in the LHS (condition 2), however much further back the back-
ward search were to continue, it would not be possible from this alone to show
that this LHS is indeed the LHS of an IRR. This is because if the computation
is again run forward, this LHS has the pointer at the same point as a previous
CS and is therefore not shown to be one of the list of CS’s playing the spe-
cial role in the above definition, though it could possibly be shown to be one
as a result of another backward search path. This is the justification of the
terminating condition 2 in the backward search algorithm. See [2] page 30.

This proves that

Lemma 2.1. The triplets 1 - n — 0,1 - n —>n+1, andn — 1 —
n+1, andn — 1 — 0 representing TM computations each form an IRR (type
LRL, LRR, RLR or RLL respectively) if and only if the origin indicated (the
first member) is the first CS arrived at with the pointer in that position after
tracing the computation back from the LHS (the middle member) and the the
pointer does not occur again in the position it had in the LHS in the reverse
computation path from the LHS i.e there is no other CS 1 or n between the 1
and the n in the triplet forms above. Furthermore any IRR of length n of one
of the types RLL, RLR, LRL, LRR has one of these forms.

Generating all the IRR’s based on Theorem 9.1 of [I] starts with all single
TM steps in the above notation 1 — 0 (i.e. x - x)or 1 — 2 (i.e. x — x.)
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where x’s represents an arbitrary symbol that could be different for each use.
Every possible single symbol (called «) is added at the pointer position in each
RHS, and in each case the computaton is taken as far as possible to get the
new RHS unless a stationary cycle occurs. The resulting rule LHS — RHS is an
IRR if it irreducible i.e. connot be expressed with shorter strings of symbols.
In the first case, adding « on the left and continuing the computation as far
as possible gives results either of the form (i) 2 -1 — 3 or (ii) 2 - 1 — 0 i.e.
ax — ax — XX_ or _xx respectively unless a stationary cycle is obtained. The
results in case (i) are IRR’s by Lemma [2.1| because there can be no other CS’s
between the 2 and the 1 which is a single TM step. The results from (ii) are
IRR’s if and only if the first move beyond the 1 is to 2 i.e. the computation has
the form 2 —+ 1 — 2 — 0 because this ensures that the rule 1 — 0 contained in
(ii) of length 2 is irreducible. Likewise for the mirror image case starting with
a rule of the form 1 — 2 adding the a on the right and continuing gives results
of the form 1 — 2 — 0 ( € IRR(2)) or of the form 1 — 2 — 3 ( € IRR(2) if
and only if the first move from the 2 is to 1).

Consider extending this to the general case of generating all the IRR Y of
length n 4+ 1 based on the single IRR X of length n > 2 and having the form
n — 1 — n+ 1, which can be also be written as A — B — C for some CS’s A,B,
and C. First the computation A — Ba — Ca holds where « is any symbol
the TM uses. Clearly by Theorems 5.4 and 9.1 of [I] every such IRR Y can
be obtained starting from the LHS Ba if an appropriate a can be found. The
symbol o must be chosen so that Ba is reachable i.e. 04(Ba) # (). These are
all the terminal CS’s of length n + 1 from the backward searching algorithm
starting from Ba and ending in condition (1). Each of these branches has a
point where the pointer first reaches n and this CS is Aa because the a has
yet played no part, so 0;(Ba) = 0;(Aa), thus the backward search algorithm
is applied to Aa, and identifying all possible values of « i.e. the values of «
for which 0;(Aa) # 0 by generating all its origins for each such a. Also the
forward computation from Ca is continued as far as possible to generate the
RHS of Y and hence what its type is (LRR, LRL, RLR, RLL, LRC, or RLC)
the last two cases coming from a stationary cycle in the forward computation
from Ca.

If the pointer is at the left in A and C and the right in B (the mirror image
case) the added arbitrary symbol « will be on the left. This procedure for
generating the all the IRR Y of length n+ 1 like this from an IRR X of length
n, including the mirror image case where the triplet form of X is 1 — n — 0,
will denoted by the function F. F applied to an IRR of type LC or RC is the
empty set. This proves that

Theorem 2.2. Every member of IRR(n + 1) can be obtained using F from
some X € IRR(n) of type RLR or LRL for n > 2. Also, because forward
computation is unique e.qg. the RHS of an IRR is uniquely determined by is
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LHS, but the origins may be more than one, the sets of IRR obtained like
this for different X (different B) must be disjoint i.e. F~* applied to a member
of IRR(n + 1) is a unique member of IRR(n). The first part can be written
symbolically as

IRR(n+1)= | J {F(X)} (1)

XEIRR(n)

The following is the general outline showing an IRR triplet of length n
of type RLR (type RLR with origin having the pointer at the right) and the
possible types of result (except the cases where a stationary cycle occurs) of
this argument for a given symbol « that could include a new IRR triplet of
length n + 1.

Cannot be used to 15
prove reachability of 1 n—1—-n+1 {
Proves reachability of 1 n+1 —

— 0 type RLL
— n—+2 type RLR

(2)
The 3 central CS’s refer to a member of IRR(n), and the leftmost, central, and
rightmost CS’s refer to the corresponding member of IRR(n+ 1) if reachability
of the CS 1 in the centre of ([2)) is found. The corresponding mirror image result
for the LRL case is as follows:

Proves reachability of n+1 1 —
Cannot be used to prove
reachability of n + 1

— 0 type LRL
— n—+2 type LRR

(3)
In this case note that because the « is added on the left, all the pointer
positions in the IRR of length n have been increased by 1 when they appear in
the embedded IRR of length n, so originally they would have been 1 — n — 0.
The above procedure allows the generation of all the IRR of a TM up to any
given length and has been implemented [3].

D1 2—>n+1—>1{

3 IRR patterns (IRRP’s) and IGR’s

The derivation of IRR’s from other ones (length n) following the procedure
F described above was found to often take the same form independent of n
provided n is large enough. Then the obvious step is to describe these general
results termed IRR generating rules (IGR’s) so that they can be easily applied
in any given case. These results have an LHS and an RHS and the existence of
a member of IRR(n) matching the LHS implies the existence of a corresponding
member of IRR(n+1) matching each of the parts of the RHS. Each of these
parts and the LHS take the form of a generalised IRR in which the symbol «
appears and two arbitrary strings, Ty in the origin and T, in the RHS, and the
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LHS (middle member) is omitted so that any LHS is matched. These general
forms for the IRR’s were termed IRR patterns (IRRP’s).

The analysis techniques were applied to the following TM which was
generated randomly with 5 states and 5 symbols. This TM, being much larger
than any that I have analysed before, has proved to be a much more challenging

case.
la—+2d 2a—1c. 3a—4c. 4a—+3Db ba—2e

1b—>4d 20 —>4c 3b—4c 4b—4b_ 5b— 3e
1c —+3.a 2c—1d. 3c—2a 4c—3c. 5c— 3a_ (4)
1d —»2b. 2d »1a 3d—>5c 4d >5c 5d >4a
le - 2b. 2¢e +3c 3e —3b. 4e —+ba. be — 3a_

For example it is known that at least one IRR for this TM matches
1daT; —— 4_caT,. (5)
Using backward TM steps from ([4]) gives

deriving the origin old RHS RHS «
ol aC
" 2ddaT; 4acaT, 3.bcaT,
ladaT, = 2adaT;  4ccaT, labcT, ¢
% 2cdaT, 4dcaT, b5.ccal, d

)

(6)

of which the result for &« = ¢ has an RHS given where the pointer is at the
first symbol of T,. The results of F are written as follows

2ddaT; —— 3_bcaT,
2adaT; —— labcT, (7)
2cdaT; —+— b_ccaT,

for a = a, c, d respectively, and the complete IGR can be written as

= 2ddaT; —— 3_bcaT,
1daT; —— 4_caTy{ = 2adaT; —>— labcT, (8)
4 2cdaT; —+— b5_ccaTl,

Note that in this argument, adding the arbitrary symbol a on the left
(because the pointer in the origin is on the left) maintains the pointer being
on the right hand end of the string of symbols in the LHS (not shown), and this
property is implicit in an IRRP with the pointer at the left of the origin CS.
The result of this argument is that if an IRR of length n conforms to , then
there are 3 more IRR’s of length n 4 1 corresponding to for a € {a,c,d}
respectively. The second of these results in @ has the pointer in the RHS on
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the right, so this IRR has type LRR and cannot be used to derive other IRR’s.
These are examples of rules that generate IRR’s of length n + 1 from other
IRR’s of length n. An IGR is defined as a logical implication having an IRRP
on the left and sets of IRRP’s on the right, one set for each value of a and the
logical deduction follows the general procedure outlined in Theorem [2.2] Thus
the strings with given symbols on the right of the implications are one symbol
longer than those on the left.

To illustrate how an IRR can be derived from a member of IRR(2) and
a sequence of IGR’s, consider the following IRR of length 6 that was chosen
from the computer program output and represented in Origin — LHS — RHS
format as follows:

3aecccb — 1cadbdb — 2dbdbdb.. 9)
The derivation of the first rule of (9)) in single TM steps is

3aeccchb
4ceccch
Bcacccb
3caacchb
2caaachb
1cacacb’
2cacdcb
1caddcb
2cadbcb
1cadbdb

Each time the pointer moves to where it has not been before while going back-
wards from the LHS, the derivation generates IRR’s as follows, followed
by @ in triplet and the abbreviated notation:

2¢cb — 1db — 5_cd € IRR(2) 2cb —+— b_cd
1dcb — 1bdb — 3_ecd € IRR(3) 1dcb —-— 3_ecd (11)
2cdcb — 1dbdb — 5_cecd € IRR(4) 2cdcb —-— 5_cecd

4ecccb — ladbdb — 2_ececd € IRR(5) 4ecccb —— 2 ececd

This splitting up of the derivation of @D results from the repeated application
of F to (11)).1. The abbreviated forms in (11)) can be obtained by applying in
order the following results to the first of these IRR’s 2cb —+— 5_cd.
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b 1QT1
2 5= 5T, = | o

} —— 3_eTy
= 24T, —— 4cT,
1T, »— 3.Ty{ = 2aT; —— 2.aTy
2 2¢T, —— 5.cTy

4eccTy
a 4eecT;
2cdTy -— 5.Ty = 5cadT, —— 2.eTy

5eadT;

3§T1
4bT,

For the initial steps in the derivation of @D, the following subcases of
successive members of need to be applied in this order: 1, 3, 1, 1.

Equation contains examples of IGR’s which allow one IRR to be de-
rived from another by substituting for the T; and T, as the example shows,
and express the application of the function F in Theorem in a simpler form.
The IGR’s have two lengths, one associated with T; and one associated with Ty
and these are defined as the lengths of the corresponding strings on the RHS
of the IGR thus for example the lengths of the IGR’s in (12]) will be donoted
by (1,1),(1,1),(3,1),(1,2) respectively. The equations are in the shortest
forms possible as can be verified from their derivations.

The symbols above the implication signs are the symbol added next to the
pointer in the origin («) in the derivation of the IRR’s from other ones as
described in Section , and are the first 4 symbols of the LHS of IRR @D taken
in reverse order. The results on the right in are all the results that can
be derived from their LHS for that value of o and that length, though the
third example is quite complicated and has other values of « ie. b and ¢ with
different lengths of results.

The IRRP on the RHS of the last member of is of type LRR and can
be seen to not generate a new IRR directly. Applying the last member of
to the last IRR of gives the initial result

3aecccb — 1cadbdb — 2dbcecd (13)

4T, —— 2.eTy = } —— 2dbT,

which is not an IRR. Taking this computation as far a possible has to be an
IRR (in this case having non-extendable type LRR) which is

3aecccb —— 2dbdbdb_ (14)

and has o = ¢ and is in agreement with @ The derivations of and
illustrate the general procedure for deriving any IRR by repeated applications
of F i.e. applying a sequence of IGR’s starting from a member of IRR(2).
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This example suggests that if all the IGR’s needed to generate the IRR(n+
1) from IRR(n) were obtained, these could have lengths much less than n + 1
and be fewer in number than the IRR(n + 1), and this might give a more
compact way to represent the action of the TM. This will be followed up later,
but many details need to be given first.

Every IGR represents the process of deriving a member of IRR(n + 1)
from a member of IRR(n). Therefore every such IGR can be obtained from
another IGR (representing the process for deriving the member of IRR(n) from
a member of IRR(n—1)) by an appropriate specialisation by adding the context
symbols, applying F, then removing any redundant symbols as before. But the
number of such context symbols needed seems to be unlimited.

4 General Definition of IGR’s

The general form of the derivation of an IRR from an existing one (F) can be
expressed in detail as follows. Start with the IRR pattern (IRRP) of type LRL

tl&- .. YnTl —— 19 z1...2,Ts (15)

in which T; and Ty have been omitted for brevity in much of this section. Here
n > 2 and the t’s are machine states and y’s and z’s are symbols.

Then proceed with F i.e. add the symbol « to both sides where the pointer
is in the RHS then the backward search gives the following types of results (ex-
cluding the stationary cycles) which can be classified according to the rightmost
position j; of the pointer relative to the symbol y;

thdlyy ...y, for 3 =0
tiays .. Yn < QUYL Y Va2 Ve for 1< <n—2 (16)

thayy . Yy, for i=n—1

where the primes indicate a possible change in the symbol or state by the TM.
For the case n = 1, 7; must be 0. Note that the form t}a/y|ys ...y, cannot
arise because a single backward step to the right followed by two backward
steps to the left could possibly alter y; and y, whereas a single backward step
to the left has j;= 0 as above.

The point of the classification is to enumerate all the different types of case
that can arise after all the symbols that are not altered in the derivation are
abstracted out. They are not mentioned explicitly and they form part of an
arbitrary string (in this case T;). The last reverse computation step in the last
case giving j; = n — 1 cannot not lead to a new IRR because this path and
the CS reached does not imply the reachability of the LHS and so does not
generate an IRR. If the LHS is reachable it must be because there is another
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origin with j; < n — 1. Therefore this case must be omitted for the purpose of
generating IGR’s, so j; can be restricted to the range 0 < j; < n — 2.

Similarly, for the computation of the new RHS, the results can be classified
(again excluding stationary cycles) by the rightmost position j» of the pointer.
So that this parameter also starts at 0, the pointer starts at position 0 at «
and ends at position -1 if it goes left and ends at position n 4 1 if it goes right
giving the possibilities

/ !/ / -
tya'zy ... 2z ... 2, where 0 < jp < nor

toazy ...z, — { (17)

tho'zy .oz _if p=n+1

This works whenever n > 1.

If a stationary cycle occurred in (16]) it would be noted, but it would have
no effect on the general form of the possible results except that none of the
forms of endpoint in ((16)) might result, because a stationary cycle would result
in a closed circuit in the reverse search path from which paths ending in a type
of endpoint in or none could diverge. As noted earlier this would imply
tiayy ...y, is in the closed circuit (to avoid a branch point in the forward
computation implying it is not unique) so the derived IRR would have type
RC. This implies a stationary cycle in the result of .

The minimum number of symbols needed for the representation of is
easily seen to be

1 for j; =0
e {ji + 2 otherwise (18)

provided 0 < 7; < n — 2. Similarly, the minimum number of symbols needed
for the representation of the result of is

o = min(j + 1,n + 1). (19)

The length of an IGR consists of the pair (ry, rp).
From and the remaining four combinations can be summarised as

tlh NN ty 21... Zj2T2 :a>
tlzl R ylerlTl ty z1...2,T9
! ! / ! ! !/
{ , . }:1&’1‘1/ } _>_) {t%al Z/l P ZIJ2T2}
tiay) - Y40 toa'zy ...z, Ty
In this statement the top and bottom parts on the left of —— can be combined
independently with the top and bottom parts on the right of —— i.e. there are
four combinations possible. Of these the distinctions on the left of —— do not

change the type of the new IRR this being respectively LRL and LRR for the
top and bottom parts on the right of to —. The IRR”s are also distinguished

. (20)
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by different pairs (ji, j2). The type of an IGR is defined as the type of the IRR
that it generates.

The corresponding right-left reversed results starting from an IRRP of type
RLR also involve the parameters j; and 7, obtained similarly but counting
leftwards. Thus starting from

Y0 Y1 = taZp . 210 (21)

likewise the following types of results are obtained which can be classified
according to the leftmost position relative to yi, (ji) of the pointer. This
satisfies 0 < 7; < n — 1 and gives the following:

t1¥n ... y1a for j; =0
t1Yn - Y10 Q Y0 VoY Y1 for 1 < i <m—2 (22)

YY1 - yia for i =n—1

Naturally, (18) and and are still valid and all the types of result in (20)
have corresponding mirror image forms.

These types of result in are expressed with the shortest strings of
symbols possible (i.e. the y’s and z’s). The strings T; and Ty being arbitrary,
so can be replaced by any strings. They do not have to have the same length.

These together with their left-right reversed forms are all the different types
of IGR’s possible.

Simple examples of these are in , and and indicate the general
method for deriving them which is as follows. After the symbol « has been
added to the origins on the left, reverse steps of the TM are made recursively,
making sure that all possible reverse steps at each stage are done and stopping
only when further reverse steps are impossible without the knowledge of what
the strings T; and T, are, as described in Section .

Thus an IGR is defined to have no redundant symbols where the pointer
does not reach during its derivation. This is analogous to IRR’s being irre-
ducible. In the derivation of the IGR from an IRR of length n, the backward
search to obtain the new origins and in the forward computation to obtain the
new RHS, the pointer can obviously never move outside the strings of lengths
r; and rp introduced above except for the last TM step in the forward com-
putation. In addition all these positions of the pointer are reached during the
derivation, the string of length 7 for the derivation of a new origin and the
string of length r, for the derivation of the new RHS.

If the pointer ends up at one end of the string T, ( indicated by Ts), the
pointer position is clear from the context. The pair of strings of symbols
(Ty,Ty) of lengths (n + 1 — m,n + 1 — ry) respectively in that are not
passed by the pointer during the derivation of an IGR from an IRR of length
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n that is the basis of its LHS will be removed and listed as “context pairs” so
that the result is presented in its minimal form i.e. as an IGR in computer
output.

A IGR could be defined to include all the possible results that can be
derived for any possible value of a (an IGR member), i.e. all the possible
origins for each «, but if there is not likely to be confusion I will refer to such
statements as IGR’s as was done above. Thus an IGR would be the union over
a of the IGR members. An IGR member has the form (IRRP,a) = set of
IRRP’s, so the above results in could be described as IGR members. Thus
it would be possible for different RHS’s of the IGR to have different values of
(71, 12) corresponding to different values of o, but these will be separated into
different IGR’s in the computer output.

There can be a problem that occurs in the computer representation of the
IGR’s after the context strings have been separated out, which is to determine
whether the original IRRP on its left is of type LRL or RLR. Provided n > 1, it
is not immediately obvious which is the case because the pointer positions and
the parameter j; can be counted going either way, for example compare
with . The way it works is that a CS in the computer program output is
represented as CS(t, p, 1, string) where t is the machine state, p is the pointer
position counted from the left and is one for the symbol on the left, and is 0
for the position just to the left of this symbol, and is 141 for the position just
to the right of the string, where 1 = n is the length of the string. The string
is spelled out inside quote marks in printed output. After the context strings
have been split out of the derived IGR, the pointer position in the origin of
the IRRP set on the LHS of is 1 by convention if the original IRRP (see
(16))) (the LHS of the new IGR) was of type LRL or LRR because the pointer
starts at 1 and is not affected by the truncation of the symbols from the right.
If the original IRRP was of type RLR or RLL, the pointer position in its origin
(LHS of (21)) is initially by convention at n (i.e. the right hand end) and is
reduced as a result of splitting out the context symbols. This for j; = 0 is
position n minus the length of the string of symbols removed also n i.e. 0, and
is n minus the length of y, ...y; 12 otherwise, which is j; 4+ 1. This value can
never be 1, so the value 1 is characteristic of the original IGR being of type
LRL. This implies that the value p = 1 in an origin CS on the LHS of an IGR
indicates, provided n > 1, that the context strings (T; and Ts) are added on
the right, and on the left otherwise. For the case n = 1 this is obvious from
the RHS of the IRRP on the LHS of the IGR. which is of the form t,_z; or
t9z1_ according to whether the IGR is of type LRL or RLR respectively. This
shows that this obvious convention for defining the pointer positions in the
different cases distinguishes the LRL, LRR from the RLR, RLL types of IGR.

The above argument shows, when combined with Theorem [2.2] that
(1) every IRR of length n + 1 of type RL can be derived by F from another
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IRR of length n of type LRL by an IGR with parameters (7, r3) of type (20]).1
(LRL ) in satisfying 1 <7 < n and 1 < r, < n+ 1 as described and
(2) every IRR of length n + 1 of type LRR can be derived by F from another
IRR of length n of type LRL by an IGR of type (20).2 (LRR in (20)) (with
parameters r; and 7, such that 1 <7 <nand rn,=n+ 1.

These can be applied recursively to show that

Theorem 4.1. any extendable IRR (type LRL or RLR) of length > 3
can be obtained from a member of IRR(2) by a sequence of substitutions of
IGR’s as described here under case (1). Any non-extendable IRR (type RLL
or LRR) can be obtained from a member of IRR(2) by the above substitutions
(0 or more) followed by a single substitution step under case (2).

This theorem is illustrated by the example at the beginning of this section.
This suggests the obvious process for generating the set of all the IGR’s could
start as follows after finding all the members of IRR(2). Essentially this was
the method used in the latest version of the program [5] to generate Table

Find all the members of IRR(3) and the IGR’s used to generate them from
the IRR(2). These will be IGR’s of lengths (1,1), (1,2), (1,3),(2,1), (2,2),
and (2,3). Likewise the IRR(4) can be obtained from the IRR(3) and the
IGR’s summarising this can be added while not duplicating any IGR’s already
found etc.. This can be repeated to generate up to the IRR(n). After a while
hopefully to generate the IRR(n + 1) from the IRR(n) will not require any
IGR’s that have not already been obtained for n sufficiently large.

In the remainder of the paper the following example was studied because
the results from became very complicated.

la — 2b_
1b — 3b
1c — 1b_
2a — 3b_
2b — 2c_ (23)
2c —+1c
3a—1a
3b—+1.a
3c — 3c_

The results for the IGR’s from TM [23] were as follows in Table [I] giving the
maximum length of the computation rules as 10.
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Table 1: IGR’s generated by the computer program

13

14
15

16

17
18
19

20

21
22

23

24
25
26
27

28
29
30
31

32

33
34

1Ty —— 1.Ty = 1Ty —— 3.bT,
b 2aca
1gaT1 —— 1,T2 = 2§Cb

lcaaT; —— 1T, = EE:;‘
1cababT; —— 1.T, = labbccbT; —— 3.bT,

1cababcT; —-— 1T, é labbccacT; —— 3_bT,

1cabcT; —— 1.Tp = gigg%g

}Tl —— 3_bTy

} Ty, —— 30T,

} Ty —-— 3.bT,

1ccT; —— 1.T, = 1abcT; —— 3.bT,

2T; —— 1.T, = 1aT; —— 3.bT,

3T, —— 1.T, = 2aT; —— 3.bT,

3T, —— 1.aT, = 3cT; —— 2bbT,

1ccTy —>— 1_ababT, = 2bbcT; —— 3bbbbbT,

1caT; —— 1_ababaT, = gggﬁ

1caaT; —+— 1_ababaT, = g%g:%
1cababT; —+— 1_ababaT, = 2bbbccbT; —— 3_bababaT,
1cababcT; —+— 1_ababaT, = 2bbbccacT; —+— 3_bababaT,
1cabcT; —— 1_ababaT, = g%gggg
1ccTy —+— 1_ababaT, = 2bbcT; —— 3_bababaT,
2Ty —— 1_ababaT, = 2bT; —+— 3_bababaT,
1ccTy —— 1_ababcT, = 2bbcT; —— 3bbbbbcTy

1caT; —— 1_abcT, = g%gf)

2T; —— 1.cTy = 2bT; —— 1bbTy
1Ty —— 3.Ty = 1Ty —— 1.aTy

1caTy —-— 3T, :b> g%gi

1caaT; —— 3.T, = EEZ%
1cababT; —+— 3_Ts :b> labbccbT; —-— 1_aT,

1cababcT; —— 3.T, = labbccacT; —— 1.aT,

2
1cabcT; -— 3Ty 2 2222;2

Ty —-— 3_bababaT,

} Ty —— 3_bababaT,

} Ty —— 3_bababaT,

}T1 —— 1bbbbTy

}Tl —— 1_aT,

}T1 —— 1_aT,

}Tl —— 1_aT,

1ccTy —-— 3T, % labcT; —-— 1_aT,
2T, —— 3.T, = 1aT; —— 1 aT,
3T; —— 3.T, = 2aT; —— 1.aT,
2T, —— 3 baT, = 2bT; —— 3bbbTy

1caT; —— 3 babT, = gﬁgi

1caaT; —— 3_babT, = g%gzﬁ

1cababT; —+— 3_babT, = 2bbbccbT; —+— 3_babaT,

T1 —— 3,babaT2

}T1 —— 3_babaT,

15
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35 1cababcT; —— 3_babTy = 2bbbccacT; —— 3_babaT,
36 1cabcT; —— 3_babT, = gggg%g} T, —— 3_babaT,
37 1ccT; —— 3_babT, = 2bbcT; —— 3_babaT,
38 2T; —— 3.babT, = 2bT; —— 3 babaT,
39 3Ty —— 3.babT, = 3cT; —— 3_babaT,
a 3T1g
40 1Ty —— 1T, 3Tib
= 2T;c —— 1Tob_

41 1Ty —— 2T, 2 2&@} —5— 3Tob_

} —— 2T,b_

42 3Ty —— 2T, = 1T;b —— 2Toc_
43 AT, —— 3T, = 2T;c —— 3Thc_
44 3T;bbb —— 3T,_ = g%;@gﬁ
45 1T, —— 2Tob_ = 2T;c —— 3T,bc
46 1T, —— 2Toc. = 2T;c —— 1T,bb_
47 3Ty —— 3Toc. = 1Tyb —— 2T,bb_
48 1T, —— 2Tybb_ = 2T;c —— 1Tyabc
49 3Ty —— 3Tybb_ = 1T;b —— 1T,aba
50 8T, —— 3Tpcb. = 1T;b —— 3T,bbb_
3Tiaaba
51 3T;bbb —— 3Tycb. = gEEZEE
3T,abbb
52 3Ty —— 3Tbbb_ = 1T;b —— 3T,baba
53 1T, —— 3T,bbbbb_ = g%i

54 3Ty —— 3T,bbbbb_ :b> 1T;b —— 3Tybababa
3Tiaaba

a 3Tiabba
55 3T1bbb —— 3T,bbbbb_ = 3T,aabb

3T, abbb

} —— 3Tsc_

—— 3T,bbb_
} —— 3Tybababa

—— 3Tgbababa

Theorem demonstrates the importance of derivations of IRR’s using
chains of IGR’s substituted into each other. Connected with this is the relation
‘can be followed by’ which restricts the possible sequences of substitutions of
IGR’s. This is given in Table [2 and requires a match on the LHS and on the
RHS in which the machine state and the symbol strings must match, as well
as the direction for adding «, and the first IGR must be of extendable type i.e.
it must generate IRR’s of type LRL or RLR. In Table 2| the numbers refer to
IGR’s in Table[1] The letters if present refer to the part of the IGR associated
with that letter as the symbol above = i.e. the symbol called «a, otherwise
the whole IGR is referred to. The following number refers to the sub-part of
the IGR with that numbered origin in the RHS of the IGR. On the RHS of
Table [1] (to the right of —) all parts and sub-parts of an IGR referenced are
included. Every IGR on the left of — can be followed by any IGR on the
right of — in the same row.
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Table 2: The relation ‘can be followed by’

1— 22,23, 24,25, 26, 27, 28,32, 33, 34, 35, 36, 37
3b1,3b2,4,5,7,8 — 22

2b1,2b2,6b1,6b2,9, 13c1, 13c2, 14, 15, 09 31 38

17,18, 33c1,33c2, 34, 35, 37, 38 9L

12c1,12¢2, 16c1, 16¢2, 36¢1, 362, 39 — 30,39

22 — 1,2,3,4,5,6,7,10,11,12,13,14, 15, 16,18, 19
23b1,23b2, 27b1, 27b2, 30 — 8,18

24b1, 24b2, 25, 26, 28,29 — 1

32c1,32c2 — 29,38

40al,40a2 — 42

41al — 49,50, 52,54

41a2 — 44.49,50,51,52, 54,55

42 — 41,46

47 — 41,45,48

50 — 43,53

51al,51a2,51a3 — 49,52, 54

51ad — 44.49,52,54, 55

By examining these IGR’s in Table [I| and the compatibility relations in
Table [2| the following facts become evident:

1. There are a relatively small number of distinct origins of the LHS’s of
these IGR’s. Each of these together with the value of a gives rise to the
same origin of the RHS of the IGR regardless of the RHS of the LHS
of the IGR. For example 1caT; with a = b is always associated with

2aca . ,
2&_10b} T; in IGR’s 2 and 23.

2. IGR’s can be chained together by substitutions for the arbitrary strings
Tl and TQ.

3. In the chain of substitutions, there is a restriction on which IGR can fol-
low another IGR; this results from the structure of the IGR’s themselves.
This information is given in Table 2]

4. Other restrictions result from the way in which sequences of substitutions
operate.

5. By carrying out F to the RHS of an IGR, it is sometimes possible to
deduce that no previous IGR’s to a sequence of them can affect which
IGR’s can follow the sequence.

6. If by carrying out F to any sequence of IGR’s to find which IGR’s can
be next in the sequence, there always results IGR’s that have already
been listed, then it would show that the set of IGR’s found is sufficient
to generate all the IRR’s for the TM.
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5 A modification of F to be applied to gener-
ating IGR’s from IGR’s

ook An obvious step to take is to attempt to directly derive Table 1
starting from all the IGR’s needed to derive the IRR(2) from the TM table
without generating all the IRR’s. The method is based on the procedure I
called F and will be modified as follows and denoted by F*. Here instead of
explicit sequences of symbols it involves the arbitrary strings T; and T,. Mostly
F works well but it soon became obvious that a different terminating condition
is needed in the backward search if the pointer reaches the end of the known
symbols i.e. is adjacent to the end of T; for example the derivation of IGR 44.

SRk powrite here FEFRkk

The CS’s where this happens will be recorded so that if some of the symbols
of T; become known it can be investigated whether or not the reversed com-
putation can continue within the region T; but now the reversed computation
should not necessarily halt at these points because the pointer might return
to a to generate a new IGR. Another change to F is needed because for the
simplest case with , = 1 i.e. an IGR of the form --- = tyT; — --- to start
with, F* starts from the backward search beginning with tayT, from which at
most one reverse TM step can be done giving say t'a’yT;, so the symbol y is
not involved and can be put into Ty, so the derived IGR has t'a/T}, and r{ =1
as is r; thus derived IGR’s must always have r = 1 which is obviously not
going to generate all the results in Table [l To solve this while maximising
the generality of the results i.e. involving the contexts to the minimal extent
possible, try involving the context symbol on the left only if r = 1.

Therefore the general procedure I propose for a TM is to first generate the
set IRR(2). These can be abbreviated to IGR’s with length (1,1) by taking
out the context pair and will be put into the set S but they should be kept
in initially. Then the following procedure is repeated until hopefully it comes
to an end with no more members to be processed. Take the next unmarked
member of S, mark it and apply F* to it generating new IGR’s that are added
to S if they are different from all the existing members of S.
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On studying how this works, a problem was found arising when applying

F* to IGR 40.1 in Table [1}, which itself arises with the context pair (c,b) i.e.

the IRR 3cd —— 2bb_. The origins are 3T;a and 3T;b which are written

more succinctly as 3T;d and the context symbol on the left is c. So putting

this back in starting the procedure F* gives the CS 3T;cda from which the
& 1T cdb

& 3Tycbd. On the

+ 3T,cda & 1T;cba{ .
< 2T,cbc

backward search gives 3T;cda

2T,bba — 3T,bbb_
right F* gives { 2T,bbb — 2T,bbc_ which can be shortened to the following
2Tybbec — 1Tpabce
3Ticd —— 2T, = 3T;cbd —— 3Tob_
IGR’s 3T, —— 2T, = 1T;b —— 2T,c.
3T;cd —— 2T,bb_ = 2T, cbc —— 1T;abc

The problem is that the first one does not appear to be involved in the
analysis of this TM because it is not in Table [I] and in particular the LIGR
that would result is 3Tcd < 3Tcbd is not obtained despite the almost complete
analysis of the LIGR’s. This is because the modified stopping condition that
allows the backward search to proceed beyond the CS 3T;cda that would have
hitherto stopped it because the pointer has reached an end. A possible reason
for this is that IGR 40.1 only occurs with the context (c,b) when T; is the
empty string. This would invalidate the above derivation of the new origins,
and in general this type of argument might invalidate the procedure F* when
context symbols are taken into account. *¥¥ikirsiiccciicokk

Temporarily disregarding property 1, and in the hope that Table [1| would
have property 6, manual calculation was started beginning with IGR 22 be-
cause from Table 2 IGR 22 clearly plays an important role. By restricting
at first consideration to IGR 1 followed by IGR 22 denoted by 1 - 22 fewer
possibilities will result for the following IGR’s. It was soon found that this
is likely to get very unwealdy because of the large number of cases to be
considered, Nevertheless is was instructive to try. The first case to be consid-
ered was what IGR’s that can follow 1227 The sequence of IGR’s 1 -22 is

1Ty —— 1.Ty = 1cT; —— 3bT, = 1ccT; —— 1 abT, obtained by substitut-
ing cTy for Ty and bT, for Ty in IGR 22. The result of this is a composite IGR.
The IRR’s that it generates are a subset of the IRR’s generated by looking for
which IGR’s follow IGR 22 alone. By trying to apply F to this general form,
results dependent on the arbitrary strings T; and T, will be produced. This
starts by considering what CS’s can lead to 1accT; for any symbol a. It is
easy to see that

% 1cceT
laccTy Leel (24)
< 2accTy

in one TM step in either case. The first of these will lead to the IRRP
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1cccT; —— 3_babTy because 1babTy — 3_babTy. The strings ccT; and abT,
are not changed because the pointer does not enter them in the derivation of

the IRRP, so the IGR used is 1T; —— 1.T, = 1cTy —— 3bT, i.e. IGR 1
in Table [ The second result of has reached condition 2 in the back-
ward search if Ty is the empty string, which implies that there is no point in
continuing the backward search further in that case.

If T; is not the empty string, the general reasoning indicates that T, needs
to be specialised further by prepending the sequence of IGR’s 1-22 with others,
however the backward search can be logically continued giving

Cﬁb labcT
2accTy < 2abcTi{ e = 1 (25)
= 2bbcT,

which is independent of T; because the first of these reverse steps from 2accT;
cannot lead to any other result than the one indicated (because there is no
TM step ending in 2_8 no matter what the symbol g in T; is). This shows
that if T; is not the empty string, the result will always be that condition 1 is
reached, giving another IGR.

Returning to the general argument, taking a further step back in the se-
quence of IGR’s to be considered gives for example 22 - 1 - 22. This sequence
gives

1T, —-— 3T, 2 1cT; —— 1_aT, L 1cccT; —— 1_abaT, (26)

the second part of which comes from 1 -22 above. The symbols above the
symbols = respectively indicate IGR 22 with & = b and as above (1 -22)
with two steps of IGR’s with a = b. Applying F to this starts by the backward
search from lacccT; giving (e.g. using (24))

<i labccTy

& 2bbecT, . (27)

< 2acccTy < 2abcecTy
lacccT,

b
< 1ccccTy

Combining this with 1babaT, — 3_babaT, and 1cabaT, — 3babbT, and ab-
sorbing any unchanged symbols into T; or T, because the pointer has not
reached them gives the results 1, 7 and

1ccTy —— 1_abaT, = 2bbcT; —— 3bbcbTs. (28)

[As an aside comment, Actually 17 is a special case of 11 which is itself a
special case of formed by successively decreasing the length of the string
in the RHS by 1. Because in these three cases, 17 uniquely has the pointer
finishing at the a end of the string in RHS of the RHS, such a sequence as
, 11 and 17 cannot be continued by specialising T, and continuing the
computation to the end in the RHS so any sequence of IGR’s ending with 17]
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In [27] because of the absence of a branch of the backward search taking the
pointer to the opposite end of the string from «, it implies that any special
cases of Ty that would result from prior IGR’s in the sequence could not affect
the new origins of IGR’s that could be next in the sequence, only the RHS’s
could vary. This is because the general form of the derivation of a new origin
follows the pattern in (27)) whatever substitutes for T;. Because 1 can also be
preceded by 24b1, 24b2, 25, 26, 28, 29, these cases could now be considered
in turn preceding 1 - 22.

These results are very complicated and the way forward seems unclear,
because in the derivation of new IGR’s by applying F, both the new origins then
the new RHS’s have to be found and there are a lot of different combinations
of cases that can arise. Also the number of cases to be considered seems
prohibitively large based on the relation ‘can be followed by’ in Table

6 Further simplification and LIGR’s

Returning to property 1 of Table [I] it appears that the left and right hand
halves of the RHS of each IGR can be derived independently (it is only « that
connects them), and the left hand sides (the origin of the LHS and the origin
of the RHS) have a lot of repetition, many appearing multiple times, thus the
presentation in Table [1] is far from optimal although the list of IGR’s given
there for generating any IRR from the IRR(2) does now seem to be complete
and can can be derived systematically up to any given length of the IRR’s.

What is hinted at above is that there could be an alternative algorithm to
generate the IGR’s directly from each other by applying F in these general cases
for arbitrary strings T; and Ty. This became extremely complicated because
of dealing with new origins and RHS’s together. It is this that [ want to arrive
at by just considering at first the derivation of new origins for the IGR’s, for
which I introduce the new concept of LIGR (Left IGR) because the RHS’s can
always be filled in later just with forward computations.

The aim of this section will be to demonstrate this algorithm before for-
mulating it precisely and hopefully show that if it does come to an end, then
the LIGR’s so obtained from a Turing Machine will be sufficient rules to allow
the computation of all the IRR’s to any level desired. Unfortunately in the
present example it has as yet proved too difficult to complete this analysis.

6.1 LIGR’s

An LIGR or left IGR is the origin of the LHS of an IGR, and the origin of the
RHS of the same IGR, combined with the symbol a. For example IGR’s 2, 23
have the common LIGR

=b 2
lacaT; & 2?22} T;. (29)
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Similarly
toga, 1, 30)
is common to IGR’s 12 and 20. These examples show that in common with
IGR’s, LIGR’s can have parts (labelled by «) and sub-parts that will be la-
belled in lexicographical order of the strings with the most significant symbol
(sorted first) being where the pointer is. Also the symbol o may be omitted
for brevity because it is always at the opposite end of the string from Ty, which
in the context of LIGR’s will be called just T because T is not involved. For
example if and are treated as parts of the complete LIGR X then (29))
is X.b and is X.c. The length of an LIGR will be the length of the symbol
string on its right, which is one more than the length of the symbol string on
the left assuming « is ommited. This notation with the reverse facing arrow
will be used because as usual the arrows ( «<— or —) indicate the direction
of the computation of the TM as distinct from logical derivation indicated by
=. Thus LIGR’s are also reverse computation rules, but very special ones
because they arise in the context of IGR’s.

There are obvious advantages of treating IGR’s in this way as can be seen
in the drastically shortened list of results (12 LIGR’s from Table|l|not counting
parts and sub-parts separately). Moreover if an LIGR (on its LHS) matches
the origin of an IRR, F applied to this IRR has as origins the result of the
substitution for T, in the RHS of the LIGR, and its RHS can be computed
directly from the original RHS using alpha of the LIGR. Thus the RHS’s can
be filled in later and do not need to be recorded in the rule for generating new
IRR’s from existing ones.

6.2 Sequences of LIGR’s and F

A sequence of LIGR’s is a chain of LIGR’s that can follow each other written
with - between them so for example if

b 2aca
L; = 1caT + 2gcb} T. (31)
& 1aT
L,=2r¢{ . 2 (32)
£ 2pT
Ly = 1T & 1cT (33)

then
Ly, = 1caT & 2acbT
Ly, = 2T & 1aT
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and the chain Ly, - Loy - Ls is the the result of the three substitutions of the
LHS performed in that sequence giving

1caT < 2acbT < laacbT < 1caacbT (35)

so the combination is 1caT pide 1caacbT.

Similarly to the way in which F was applied to sequences of IGR’s combined
together, this can obviously be done for sequences of LIGR’s. The result of F
applied to a sequence of LIGR’s of length 1 cannot give rise to any residual
CS’s because there is not enough “room” and can be affected by adding an
extra LIGR to the beginning of the sequence. To show this suppose an LIGR
or a sequence of LIGR’s combined as above X; with « on the left has a sub-part
of the form

S1Y1---¥eT & $2Z1 ... Zrpr T (36)

Likewise let X, be

/

!/ / [ed !/ /
Sl_l‘ .. yr/T — S2ﬂ. - Zr/+1T. (37)

Then for the sequence X, - X; to be possible requires, s, = s; and Vi---yrisa
substring of z} ...z, , on the left, and « is on the left for X, too. The result
of X5 - Xy is

$1Y1- Ve T & $5Z) - Zpr T = S1Y1 - YoeZoyy - Zo g T € 8221 ZesaZ0y, -

(38)
Comparing with shows the effect on X; of preceding it with X, which is
to add extra symbols next to T in its right hand member. Therefore the results
of the backward search starting from the RHS of are reproduced when
started from the RHS of and shortened to the shortest form provided the
pointer ends up at «a; these give rise to LIGR’s. In addition there may be some
extra LIGR’s resulting from the pointer reaching the extra symbols which may
be classified by the position of the rightmost symbol reached. Crucially, this
happens only when F applied to X; leads to cases in the backward search when
the pointer ends up at the opposite end of the string from « i.e. condition 2
is reached because the above searches can then be truncated when they reach
the opposite end from «. These were termed residual CS’s (RCS’s) because
they are cases that do not lead directly to any more IGR’s and LIGR’s but
indicate the possibility of them if the sequence of LIGR’s to which F is applied
increases in length as a result of a preceding LIGR appended to the sequence
in question.

Finally, there may be results of this where the pointer ends up at the
opposite end of the string from « i.e. the pointer goes right when the rightmost
symbol is reached. These are the new RCS’s in the result of F applied to (38))
and will be designated as Fo(Xs-X;). Therefore it makes sense to introduce AF;

/
. Zr/+1T.
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as the set of extra LIGR’s from F, as a result of adding an extra LIGR Y; at
the beginning of the sequence where S = X; - X5 ... X, is a sequence of LIGR’s:

AF4(Y4,8) = Fy(Y1 - 8) \ F1(S). (39)
In this notation the result of the preceding paragraph can be written as
Fo(S) = 0 = AF4(Y4,8) = 0. (40)

The converse is not true because it could be that there are some reverse search
paths that go beyond the symbols in S but none of them go back to a. In
this case Fo(Yy - S) # () or some of these reverse search paths just reach an end
because at some point no reverse TM step is possible. Here the result of F
applied to a sequence of LIGR’s was split into two components F = (Fy, Fy).
Also the result of F for a collection of LIGR’s in a sequence is defined as the
result of F for the combined LIGR, which actually only depends on the its RHS
and results from applying the backward search algorithm to it. A consequence
of this is that the arguments of F can be written in different ways e.g. the
sequence of LIGR’s can be replaced by the equivalent sequence of symbols in
the RHS of the combined LIGR.

6.3 Evaluating one extra symbol at a time

The following is a description of the above calculation taken one symbol at
a time. It can be applied when several symbols are added in one step from
a single LIGR as was the original intention, or when a sequence of LIGR’s is
added that each contribute just one symbol etc..

The result of can obviously be obtained by adding each symbol one
at a time and accumulating the results for each extra symbol added. Suppose
the extra symbols added to the starting CS s,z; - - - z; 11 from S as a result of
preceding it with Y; are z ...z, , then one can write:

Fl(Yl . S) = F]_(Sgﬁ . Zr+1Z;+1 e Z;/+1)

i=r/ 41
Ui:;:rli AF4 (2, S2Z1 .. Zry1Zeyy - - .z’i_l)} U F]_(SQﬂ. Zri1) (41)

where the first term of the union is and the second term is Fy(S). Each
step corresponding to one term in the multiple union uses the RCS’s from
the previous step. These RCS’s with the single extra symbol are the starting
points of the continuing backward search which would of course stop if at some
point there were no more RCS’s. In more detail, in order to calculate

AF1 (2}, 8221 . . Zri1Zpy g -+ 2Z5_4) (42)
which is by definition

Fi(S021 ... Zep1Z0yy ... 25) \Fi(s0z1 ... 2p 12 4 ... 25 ), (43)
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in the backward search the pointer must reach z; before ending up at the right
or left end (otherwise duplicate results are obtained that are to be eliminated),
therefore the backward search can start from

Fo(S22Z1 -+ Zrp1Zpyq - 25 1)Z5 (44)

where the last symbol is concatenated to the residual results of F,. If the
pointer reaches a the result is a new LIGR otherwise it gives an RCS which is
in

Fo(S0Z1 ... Zr1120 ... 2Z}). (45)

Putting + = r + 1 initially, then this shows that the backward search starts
from Fy(s221 . .. 2r11)2Z, 4 i.e. the set of RCS’s from the initial backward search

for S each appended with the first extra symbol z.., , on the right. If the pointer
reaches a as the backward search continues, this gives a new LIGR otherwise
it gives an RCS in Fy(s521 . . . 2r412,,) if the pointer reaches the opposite end
of the string of symbols, or comes to a point where the backward search can
go no further or end in an infinite stationary loop. Then for ¢ = r 4 2, the
backward search starts from this appended with z_ , on the right. Again the
backward search continues either the pointer reaches a giving a new LIGR, or
away from it giving an RCS in Fy(s22; ... 2,120,412, ,) etc.. This continues
until all the new symbols have been added and all possible backward search
paths are followed at each stage. If at any stage there are no RCS’s in F,
it terminates. All the new LIGR’s are accumulated and any final RCS’s are
noted. Naturally, there is an equivalent version of this if « is on the right.

It follows from this that the calculation of the combined results of AF applied
to any sequence of LIGR’s that can precede S is also given by going back one
symbol at a time and finding AF in each case without any restriction on the
new symbol added other than up to that point F5 # (). This might be a better
general algorithm than the one following, but in the example for TM 23] T use
a mixture of both strategies.

6.4 The procedure for finding the LIGR’s for a TM

This algorithm is extremely complicated and is very hard to describe so the
reader is not expected to understand this immediately. For this reason I at-
tempt to do so here in this section and then the algorithm is applied to TM
(23) in detail in Section [6.5] when it should become clearer.

Algorithm 6.1. The algorithm F applied repeatedly can generate all the
IRR’s starting with members of IRR(2) therefore the first step is to find L the
set of LIGR’s corresponding to the formation of the members of IRR(3) from
those of IRR(2) by applying F. Doing this starts with putting the arbitrary
symbol o at one end of the pair of symbols in the origin of the member of
IRR(2) and the backward search starts with the pointer at the middle symbol.
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A single reverse TM step gives a member of IRR(3) if the pointer moves to
a and if it goes the other way condition 2 occurs giving an RCS, so only one
symbol is involved therefore the reduced form (the LIGR) that results (if the
pointer goes to «) must have length 1. The RHS of each of these LIGR’s of
length 1 already is an RCS because the pointer is already adjacent to T.

Next the LIGR’s involved in forming the IRR(n+1) from the IRR(n) need
to be found for all n > 3. This can be done by searching for all LIGR’s that
can follow sequences of LIGR’s that have already been found. This involves
applying F to an arbitrary sequence S of such of LIGR’s substitiuted into each
other as in Section[6.4. This has to be done until closure i.e. until no more
LIGR’s can be found if this is repeated one more time. For this, as shown in
Section[6.3, AFy and F, need to be found only if the previous Fy # () i.e. only if
F applied to S gives Fo(S) # 0, carry out F to obtain AF,(X-S) and Fo(X-S) for
each LIGR X that can precede S where the requirement for precedence is given
m . This calculation can start from the previous Fo with the substitution
made for T indicated by X. This condition will be met for each of the initial
set of LIGR’s in L because as shown above their RHS’s each have the form of
an RCS. Any new LIGR’s from AFy(X - 8) are added to L. For any members
of Fo(X - 8) apply this algorithm recursively i.e. with X - S taking the place
of S above etc.. It is expected that this algorithm will terminate because the
matching criterion for new LIGR’s that can be prepended to the sequence gets
increasingly stringent as the length of the strings increases. If this happens
repeat this algorithm the “grand search” with the new enlarged set L of LIGR’s.
This should in fact be just to add to the previous results instead of repeating
them because the previous LIGR’s are still in L. Repeat this “grand search”
until the set of extra LIGR’s added to L in one cycle is empty.

Definition 6.2. A finite set of LIGR’s Z is closed under F if for any se-
quence of members of Z that can be substituted into one another in sequence
as i , the backward search F applied to the result of this generates results
that are each a member of the set Z.

Theorem 6.3. If there is a finite set Z of LIGR’s for a Turing Machine that
18 closed under F as described above and includes all the LIGR’s involved in
obtaining the set IRR(3) from the set IRR(2) then every IRR for that TM can
be obtained from a member of IRR(2) by a sequence of applications of LIGRs
each in Z as described in Section [6.2.

It is also obvious that no LIGR’s could be removed from this set Z and Z
still have this property because members of Z are only put there when they
are required.

Proof. Consider deriving the members of IRR(4) from IRR(3). This can be
done by applying F to each member of IRR(3) and accumulating all the results.
Applying F gives results that come from members of Z because any LIGR
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following an LIGR in Z is also in Z by the closure property. Likewise deriving
members of IRR(5) involve applying F to members of IRR(4) that themselves
have been derived using a pair of LIGR’s. Again all such derivations of LIGR’s
that can follow this sequence are in Z by the closure property etc.. O]

This all assumes that Z is finite. The case if the closure algorithm does not
terminate leading to an infinite set Z closed under F might be interesting.

The remainder of this section contains the application of Algorithm to
the example . The results are not all presented in the order in which they
were derived i.e. there are forward references to LIGR’s that have not yet been
derived. This is because L is increasing in size as the algorithm proceeds and
to avoid duplication, the results are presented assuming the current L is the
final one and in the order determined by the grand search i.e.“depth first” (if
not the results will be added to). This all assumes that the final L is finite.

It will be useful to use the symbol d in the remainder of this paper to mean
either a or b. This arose as an abbreviation useful for TM . Each instance
of d will be independent of any other one in a CS, so that all combinations
are possible. If the combinations that are possible are a subset of these, this
is more complicated and alternatives will be given in braces, but this does not
usually happen. This will allow many cases to be considered simultaneously so
speeding up the computations. When doing reverse computations, all possible
reverse steps from any of the combinations will be included.

That there is a finite number of LIGR’s has been strongly suggested in the
present case by the computer results that established Table [1| using any value
of the maximum length of the strings involved (n) between 10 and 16 and show
the same result. The computations rapidly increase in number and time taken
as n increases.

Checking the arguments requires the derivation route from the initial LIGR’s
in L to all the final ones which will be given so that the results can all be
checked.

The following are the 7 LIGR’s that arise from the derivation of the IRR(3)
from the IRR(2):

N
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The relation “can possibly be preceded by” on the LIGR’s is also being
discovered continually as the LIGR’s are being discovered. The criterion is
that the RHS of the preceding LIGR must match the LHS of the original
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LIGR in state, string of symbols and direction. The relation “can possibly be
preceded by” initially among the 7 LIGR’s is given by

w N

(47)

~NOo O WN -
NN D - O

2

Note that these LIGR’s all appear in the final set but the numbering is slightly
changed in the final set due to the use of d meaning a or b and other LIGR’s
including those of length 1 being found. While carrying out the main argu-
ment in Section the following results emerged and are collected here for
convenience because they may need to be referred to anywhere throughout the
main argument. They arose as induction hypotheses to deal with endlessly re-
peating situations that arose during the application of Algorithm[6.1|to TM
or other complex situations arising there and so simplify the presentation of
this.

Lemma 6.4. The reversed TM cannot cross the symbol a going left, and

Lemma 6.5. The reversed TM cannot cross the pairs of symbols cx going
right where x is any symbol

Proof. There is no reverse TM step of the form xa_ <— CS therefore the pointer
cannot get left of the a which is maintained. Also if the pointer were to reach
just left of the symbol ¢ a further reverse step to the right is only possible if it
is to the CS 2¢ (using 2¢ — 1_c in reverse). The next reverse TM step must
be to the left if at all because there are no TM steps of the form CS — 2 x
where x is any symbol. Thus the symbols cx are maintained and the pointer
has not crossed them. O

Lemma 6.6. The backward search from any CS of the form 1Tadbaaaa
cannot lead to any new LIGR’s or RCS’s provided the string T contains the
symbol a.

Proof. This is by continuing the backward search from there. This gives the
following tree

2Taacda’«

9 2
3Tadcda‘a < 3Tadcda“a < {1Tadcpa2a>x<

3
1Tadbaaaa < 1Tadca"a ¢ 3
1Tacca«

3Tadbadaa
(48)
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1Tadcba’a « 3Tadcbdaa < 2Tadcadac < 2Tadbadac < 1Taabadaa (49)

where the computation stopped whenever either no reverse TM step is possible,
or when by Lemmas or the pointer cannot go beyond the string as
a result of continued backward searching. Because all branches of the tree do
eventually lead to a halt, no LIGR’s or RCS’s can result from further backward
searching. O]

Lemma 6.7. Backward searching starting from any CS of the form 1Tdcabada«
leads to exactly the following set of CS’s regardless of the arbitary string T in
addition to possible CS’s with the pointer at the left depending on T:

1Tdca?dbdb
3Tdca3dbd

2Tdca3dbc

1Tdcdbdbdb
3Tdcdcbdbd
2Tdcdcbdbc
3Tdcdbadbd
2Tdcdbadbc

(50)

These are related to the set of LIGR’s in[94]20-23.
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Proof. The backward search stops if either (1) the pointer can be shown not
to get to the right because of cx on the right of the pointer or (2) no further
backward TM steps are possible or (3) the end of the known symbols on the
string is reached or (4) a stationary cycle is reached. The numbers after *
indicate continuations.

1Tccabadaa
2Tacdbadac
T a
1Tdcabadaa 3Tdcdbadac 1Tdcbbadac
- 3Tdcdbadac <
- 1Tdccbadaa

1Tdcdbadaa <+ 3Tdcdbddac * 1

1 2Tdcdaddaa <~ 1Tdcaaddaa < 3Tdcadddaa <— 1Tdcadbdaca * 2
1Tdcdbdbaa * 5

5 1Tdcacbdaa
3Tdcadbdaa <— 2Tdcadadaa < 1Tdcaaada«a < 3Tdcaaddaa * 3

1Tdcaacbaa
* 3 <— 1Tdcaadbaa 2dca?dada < 1Tdcaaaado * 4
3Tdcaadbda < {lecaZdbdQ
1Tdca3cba
* 4 < 3Tdca®dda < 1Tdca®dba < { 3Tdca®dbd
2Tdca®dbc

1Tdcdbcbaa <— 1Tdcdccbax
1Tdcdcaada * 6

* 5 2Tdcdbdada <— 1Tdcdbaada < {3Tdcdbagdoz 8

3Tdcdbdbda <—
1Tdcdbdbdb

1Tdcccaada
* 6 2Tdcacdada

3Tdcdcdada < 3Tdcdcdadar < {1Tdcdc1_>ada < 3Tdcdcbdda * 7

2Tdcdcadda <~ 2Tdcdbadda <— 1Tdcabadda

%7 1Tdcdcbcba <— 1Tdcdcccba
1Tdcdcbdba < ¢ 3Tdcdcbdbd
2Tdcdcbdbc

1Tdcdbacba
* 8 <= 1Tdcdbadba - { 3Tdcdbadbd
2Tdcdbadbc

(51)
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O

Lemma 6.8. If in a row of Table[d, some LIGR’s are produced then in
another row with the RHS of “its affect” differing only by the symbol next to
the string T, the same set of LIGR’s is produced.

For the same pair of rows of the table, the two sets of RCS’s are related to
each other because truncating these computations by the the last step must give
the same reults. esuch that a single forward computation step steps if possible.

Proof. Suppose a backward search gives
STAT,a < A (52)

in the Table [3| where the pointer is at the right had end of T; where A is a set
of RCS’s and LIGR’s. Then this will be based on

STTiov <= 81 TToar (53)

(an RCS) that may be also in the same table where the pointer is at the left
hand end of Ty, and v and [ are arbitrary symbols (with o and T having their
usual roles) and Ty and T, (as is T) are arbitrary strings of symbols and S and
S; are arbitrary states. This is because truncating the string to the right of T
by one symbol on the left will convert any LIGR’s arising only because of that
last symbol to RCS’s. This will be done several times if necessary to get the
required line of the grand search. Therefore can be written as

STAT v < SiTAToa ¢ A. (54)

If the pointer does not reach S in this derivation, it follows from this that 3
can be replaced by any other symbol say v

STYTiar +— S TYTox <— {SoT0Tocr, A} . (55)

where the first member of the set on the right (an RCS) is there if and only
if in the TM table S;0 — S;7v_, and v and ¢ are also arbitrary symbols. If
does not lead to any RCS’s then the derivation cannot have the pointer
reaching 3 then the derivation is followed as in the proof of except that
B is replaced by v and the pointer never reaches v leading to the same LIGR’s
after the unused symbol v has been removed and no RCS’s. If g is reached in
then follow the reverse steps that lead to the pointer reaching f giving
some RCS’s that could be different from those in .

As long as f is not reached by the pointer, the symbols to the right of 5 are
independent of 5. Therefore if the backward search from is completed, the
corresponding results with a different value of 3 are obtained by (1) assessing
whether or not the single step to 3 is possible from the start or from any point
where the pointer reaches one space to the right of § and if so including the
RCS obtained, and (2) taking the results that don’t take the pointer to g and
replacing 8 by the new symbol. This leaves the LIGR’s unchanged after the
symbol in place of § that plays no part in the calculations is removed. O]
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Lemma 6.9. Any RCS of the form 2Tbb*"'adda does not lead to any
LIGR’s forn > 0.

Proof. For convenience let the string b®"adda be deonoted by S because it
remains the same throughout the proof and note that the leftmost symbol of S
isbif n > 0. Add an arbitrary symbol § on the left according to the procedure
described in section and continue the backward search from there gives
1TabS
2TbbS"
this for the first case giving 1TabS < 1TcabS. Repeat this argument again
gives

2T[5bS The second case is as above with n increased by 1. Repeat

1TccabS *
1TSBcbbS
1Tfcabs «+ 3TfcdbS < ¢ 2TacdbS x* (56)
3TfcdbS « 3TccdbS *

1TBcdbS < 1THccbS

In this search tree, x indicates that by Lemma[6.5]the pointer can never reach «
i.e. no new LIGR’s can result from further additions of symbols. Because this
search tree is complete it follows that the backward search from 2Tbb*"*addo
cannot lead to an LIGR unless the backward search from 2Tbb*"2adda also
leads to an LIGR. This gives an infinite regress showing that no RCS of this
form can lead to an LIGR for n > 0. O

6.5 The main argument

Because of the fact that LIGR’s result from backward searches where the
pointer starts and ends up at «, any such result can be usefully classified by
the parameter 7; in , the maximum number of reverse TM steps away from
a during the computation. The resulting LIGR will have length (on the right)
equal to 7; + 2 because the symbol where the computation starts and o have
to be included. Obviously if a substring involved in such a computation is
the same between two strings (obtained by truncation from opposite «), the
results obtained such that the pointer never leaves that substring will also be
the same, therefore the set of all LIGR’s and their lengths obtained from a
given string allows the set of LIGR’s and their lengths to be obtained from
any substring of the string by truncating it from the end opposite o. This is
just the subset given by j; < the length of the substring — 2. The values of j;
are given by the program [4] to facilitate obtaining the LIGR’s.

Due to the problem with presenting this and the forward references men-
tioned above, in the following the numbers of LIGR’s refer to the LIGR’s listed
in (94) which is the most up to date list of LIGR’s obtained by Algorithm
applied to TM .

Rather than repeating the phrase “Applying F to the sequence of LIGR’s

7

X gives ...” on many occasions it will be shortened to X =
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6.5.1 Sequences ending with LIGR 1

Applying F to 1 gives just laaT & 1caT ie. LIGR 3ie 1 = 3. Clearly
applying F to an LIGR of length 1 as is done here could possibly lead to more
results if T is specialised by giving a symbol at one end of the string (here
the left end) therefore preceding LIGR’s must be considered. LIGR 1 can be
preceded by LIGR 4 giving 4 - 1 having the combined effect 3T & 2aT & laaT

i.e. 3T e laaT and 4 -1 £ 3 because F gives the calculation

<i 1caaT b 1 T

laaaT 30aaT i.e. lagaT{ & 1caa (57)
_. < 3aadT
3aabT -

The first part of this is LIGR 3, and the second part is a pair of RCS’s. By
specialising this by giving the first symbol(s) of T, the first result will not
generate any new LIGR’s after reducing the result to its shortest form, the
result will merely be replicated, but for the second part it is possible that the
reverse computation could take the pointer back to o and so generate more
new LIGR’s so the search has to continue back, so we have thus far

F

...1:17{3]» ‘ (58)

.- 4-1= {3}
The second member of this is related to its first member because any results
of F from the first part must be included in the results of the second part
as happens here but the RCS’s are not the primary result of F and are not
included in .2. There are RCS’s so any LIGR’s that can precede 4 - 1
must be considered and F must be applied to all these. The LIGR’s that can
precede 4 are just 8,10 and 21. The sequence 8-4-1 gives 3T < 3cT « 1aacT.
Applying F to this starts from (from with the substitiution given by LIGR
8) laaacT < 3aadcT in addition to 3 as above and AF, is just the result of
this backward search from 3aadcT and because the computation cannot go
back from there AF;(8,4-1) = () and Fy(8 -4 -1) = (). Therefore there are
no results of F and it is now it is clear that no preceding LIGR’s specialising
this T can give any results of F, so the search for new results of F stops in
this branch of the grand search tree. The sequences 10 - 4 - 1 have the effect
1caT ¢ laaccdT and applying F gives lavaaccdT < 3aadccdT from which
there are no further backward steps so there are no new LIGR’s or RCS’s and
these branches of the grand search end i.e. AF;1(10-4-1) =Fo(10-4-1) = 0.
21 -4 -1 has the effect 1cabcT < 1aac®dcT and F applied to this by gives
3aaac®dcT
3aabcidcT
This completes the analysis for all sequences that can precede 4 - 1 therefore
the next sequence of LIGR’s to be considered is 5 - 1 i.e. 2T < 2bT < 1abT.

laaac®dcT + which by Lemma [6.5( cannot lead to an LIGR.
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The computation of F starts from 1aabT and gives no result other than LIGR
3,80 AF4(5,1) = F5(5-1) = (0. Next 9-1 must be considered which is 1caT <+
2acdT < laacdT.

1caacdT

3aadcdT (59)

9-1= 1aaacdT + {

which is also a special case of (57). The first of these is just LIGR 3 and the
second cannot continue, so there are no new LIGR’s from preceding 1 by 9 i.e.

AF4(9,1) = Fo(9-1) = 0. It is not too difficult to show that similar results
hold for all the other LIGR’s that could precede LIGR 1 and all the results
starting with F applied to 5 - 1 can be summarised as

AF({5,9,12,14,20},1) = F5({5,9,12,14,20} - 1) = 0. (60)

This exhausts all search trees in the grand search starting from LIGR 1.

6.5.2 Sequences ending with LIGR 2

Next consider applying F to sequences ending with 2 which is 3T & 1Tb. F
applied to this gives

1Tl_)a{ < 3Tbd (61)
< 2Tbc
which are LIGR’s 6 and 7 so

2= {6,7}. (62)

The last symbol of T in could affect this result so LIGR’s preceding 2
must be considered which are just 7,16,18,22,24 and26. The sequence 7 - 2
is 1T & 3Td « 1Tdb and applying F gives the same set i.e. LIGR’s 6,7 and
no RCS’s i.e. AF4(7,2) = Fy(7 - 2) = (. This is because the pointer cannot
move left in the reverse computation regardless of any other specialisations of
T resulting from preceding LIGR’s. Consider 7 - 2 which is 1T < 3Td « 1Tdb.
F gives 1Tdba < 1Tcba in addition to 6 and 7 and so can be potentially
specialised further i.e. AF;(7,2) = () and Fo(7 - 2) = 1Tcba. LIGR 7 can only
be preceded by 2 and 15 so the next sequence to be considered in the grand

search is 2 - 7 - 2 which is 3T v 1Tb < 1Tbdb. F applied to this gives
1Tbdba < 1Tbcba < 1Tccba (63)

i.e. AF1(2,7-2) = () and Fy(2-7-2) = 1Tccba. This RCS by Lemma (/6.5
cannot lead to any new LIGR’s because the pointer can never reach a by the
reverse TM computation however many preceding LIGR’s are added to the
sequence. Therefore there is no point in continuing grand search along this
branch. This is a short cut that was not anticipated in the general algorithm
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. . db
. Next consider 15 - 7 - 2 having the effect 3Tb%a <« 1Tc o dbdbdb.

Applying F to this gives a result of the same form as in therefore the
same conclusion follows and the grand search continues from 16 - 2 which has
the effect 3Tb%a < 1Tca®dbdb. Applying F to this gives some results of the
form (63 not leading to any new results as above or with the symbol a in the
rightmost but one position. This is of the form 1Tbab having no preceding TM
step to the left in F hence F applied to this gives AF; = F, = ().
b b

The sequence 18-2 has the effect 3Tb%a «— 3Tcd {Ci} dbd < 1Tcd {CZ‘} dbdb.

Applying F to this gives

b

b b .
1Tcd{ a} dbdba < 1Tcd & dbcba < 1Tcd dccba. There is no

ba
cb cb cb
point going any further with the algorithm F because from this CS, by Lemma
it is not possible for the pointer to get to o regardless of any preceding LIGR’s
i.e. no new LIGR’s can result from this, another unanticipated short cut to Al-
gorithm [6.1] Similar results all hold for {22,24, 26} - 2 which lead to applying
the backward search from a CS of the form 1Tdbdba.

6.5.3 Sequences ending with LIGR 3

Consider sequences of LIGR’s ending with 3 which is 1T & 1cT Applying F

starts from 1acT & 1ccT showing that 3 = {3}. 3 can be preceded by 1, 3,

11 and 13. The sequence 1 -3 is 2T < 1aT < 1caT. Applying F starts from
b

1acaT < 1ccaT
< 3acdT

preceding 3 with 1. The sequence 4 - 1 - 3 is 3T < 2aT < 1caaT. Applying F

gives

showing that two new RCS’s are the only extra results of

< 3acbdT
lacaaT « 3acdaT < ...{ & 2acdaT . (64)
& 3ccdaT

where the pointer does not reach the a adjacent to T during this computation
of the last two parts therefore this shortens to

b
1caT T 2acdl (65)
< 3ccdT

which are new LIGR’s and will be numbered 9 and 10 respectively, and the
RCS’s which require further backward searching. The sequence 8 -4 -1 -3 is
3T < 3cT < 1caacT. Applying F gives

& labadcT

c (66)
< 2bbadcT

lacaacT < 3acbdcT {



36 John Nixon

after a few steps. These when abbreviated are

b
1caaT <: labadT (67)
& 2bbadT

which will be numbered LIGR’s 11 and 12 respectively. Also there are now no
RCS’s, so this branch of the grand search ends.
The sequence 10-4-1-3 has the effect 1caT < 1caaccdT and F gives, using

(64),
& 1abadccdT

c (68)
< 2bbadccdT

lacaaccdT + 3acbdccdT {
produces only 11 and 12 again and no new RCS’s.
The analysis for 21 -4 -1 - 3 is similar with the same result. Next consider
5.1 -3 with the effect 2T <— 1cabT. Then applying F gives

b

< 2acdbT
dbT a
lacabT + 3acdbT 4 o€ & 3cedbT (69)

1lacdbT

apart from CS’s for which there is no preceding CS. This gives two results
which reduce to LIGR’s 9 and 10 and an RCS. 4-5-1-3is 3T < 1cabaT and
F gives

1acabaT < lacdbaT < 3acdbdT (70)

from . This RCS requires going back in the grand search.
The next sequence 7-4-5-1-31is 3T < 1cabacT. F gives

1acabacT < 3acdbdcT ¢ 2acadbcT. (71)

By Lemma because of the a on the left of the pointer, no new LIGR’s can
result if this branch of the grand search is continued. For 10-4-5-1 -3 which
has the effect 1caT +— 1cabaccdT, F can start (by (71])) from 2acadbeedT and
again by Lemma no LIGR’s can result from this branch. The same holds
for21-4-5-1-3. Consider 5-5-1-3, F can start from 1acabbT < 1acdbbT
1accbbT from which there are no RCS’s or LIGR’s. Applying F to 9:5-1-3 can
1ccabacdT
start from lacabacaT < lacdbacaT < { 2acdbacdT where other branches
3ccdbacdT
terminate due to Lemmas [6.4] and giving LIGR’s 3,9,10. 12-5-1-3is
1caaT ¢ 2bbadT < 1cab3cadT
2accdcaaT
F gives lacabcaaT < lacdbcaaT < ¢ 3cccdcaaT where the last result
2accacaaT
cannot give any LIGR’s. These can be shortened to the new LIGR’s 20 and



Developments in the analysis technique for non-terminating Turing Machines 37

21 respectively. 12 -5-1 -3 is 1caaT < 2bbadT < 1cabbbadT. F gives
2acdb®adT
lacabbbabT <+ {3gcdb3adT
14-5-1-3is 1ccT < 2bbcT < 1cab3cT. F gives 1lacab3cT < 1acdbbbcT
1accb®cT no new results. 9 -1 -3 is 1caT < 2acdT ¢ 1caacdT F gives
2acdacdT
3ccdacdT
labadcdT
2bbadcdT
already found and no RCS’s.
12-1-3is 1caaT < 2bbadT < 1cabbadT F gives 1acabbaaT <— 3acdbbaaT <
2acdbbaal which shorten to LIGR’s 9,10 with no RCS’s. 14 -1 -3 is
3ccdbbaaT
1ccT < 2bbcT <« 1cabbcT. F gives results that shorten to LIGR’s 9,10
again.
The sequence 3-3 has the effect 1T na 1cT < 1ccT. F gives laccT < 2accT
an RCS so continue. 1-3 -3 has the effect 2T < 1aT + 1ccaT

shortening to LIGR’s 9 and 10.

lacaacdT < 3acdacdT + . These shorten to the LIGR’s 9 — 12

b
laccaT + 2accaT < 2abcaT{ labcal (72)
< 2bbcaT
This shortens to
< labcT
1ECT{ < 2bbcT (73)

without any RCS’s. Equation (73] will be called LIGR’s 13 and 14 respectively.
Consider the sequence 3 - 3 - 3 with effect 1T & 1cT < 1cccT

b
1acceT + 2accceT < 2abecT{ labeeT (74)
< 2bbccT

which shortens to 13 and 14 above, without any RCS’s. Next consider 11 - 3
which is 1caaT < labadT < 1cabadT. Applying F gives

& 2acdbadT
lacabadT < ¢ & 3ccdbadT (75)

< lacdbdbT

The minimal forms of the first two results are the LIGR’s 9 and 10. The
sequence 13 -3 is 1ccT «— 1labcT ¢ 1cabcT. F gives

2acdbcT
lacabeT — | 3ccdbeT (76)
2acdbceT
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which when shortened give LIGR’s 9 and 10 and an RCS. Only 3 can precede
13 and 3-13-3is 1cT < 1ccT < 1cabcT. Note that here an extra symbol ¢ was
needed in order that the RHS of 3 matched the LHS of 13- 3. F gives the same
result as above. Of the LIGR’s that can precede 3 only 3 is compatible because
of the symbol ¢ on left and this gives 3-3-13-3 which is 1T - 1cT < 1cabcT
which again gives the same result of F. 1-3-3-13-3 is 2T < 1aT < 1cabcaT.
F gives no RCS’s and LIGR’s 20 and 21. 3:3-3-13-3is 1T <— 1cT < 1cabccT.
F gives LIGR’s 20 and 21 and no RCS’s, and likewise for 11-3-3-13-3. It
is now obvious that the same result will come from 13 -3 -3 - 13- 3 because
it starts from a CS that shares in common with the previous case the string
beyond which the computation to get these results does not go. The sequences
11-3-13-3 are 13- 3 - 13- 3 are not possible because of other compatibility
restrictions based non-adjacent LIGR’s.

6.5.4 Sequences ending with LIGR 4

LIGR 4 is 3T & 2aT. F gives

&L 1aaT
20aT{ . =2 (77)
< 2baT

which shortens to 1 and 5, and this result could depend on the leftmost sym-
bol of T because right-moving reverse steps could occur. Therefore LIGR’s
preceding 4 must be considered. 8 -4 is 3T < 3cT <« 2acT, and applying F
gives no LIGR’s or RCS’s. 10 -4 is 1caT ¢ 3ccdT < 2accdT and F gives no

LIGR’s or RCS’s. Therefore these results show that {8,10} - 4 = {1,5} only.

6.5.5 Sequences ending with LIGR 5

b
LIGR 5 is 2T < 2bT and applying F gives 2abT T LabT which shortens to
£ 2bbT
1and 550 5 = {1,5}. The sequence 4 - 5 is 3T < 2aT < 2baT. Applying
F starts from 2abaT and gives no new LIGR’s and no RCS’s. This is likewise
true for 5,9 and 12 14 and 20 preceding 5 and all follow from the fact that 2_a

and 2_b cannot be arrived at from a step of the TM, so all sequences ending
with {4,5,9,12,14,20} - 5 = {1,5}.

6.5.6 Sequences ending with LIGR 6

LIGR 6 is 1T <« 2Tc. Applying F gives 2Tca < (). A left-moving reverse
step could occur depending on the rightmost symbol of T so this needs to
be specialised by considering all possible previous LIGR’s i.e 2 and 15. The
sequence 2 - 6 is 3T <— 1Tb <— 2Tbc and applying F gives 2Tbca <— 1Taca. By
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Lemma [6.7] this cannot lead to new LIGR’s however the string is extended by
preceding LIGR’s in the sequence.

6.5.7 Sequences ending with LIGR 7

LIGR 7 is 1T « 3Td, and 3Tda il 1Tdb which shortens to 3T < 1Tb i.e.

2,807 = {2}. Because of this, from all subsequent specialisations of this

resulting from LIGR’s preceding 7, all lead under F to LIGR 2. Only 2 and 15

can precede 7 and 2 -7 is 3T < 1Tb <— 3Tbd and the backward search is just

3Tbda <— 2Tada giving an RCS so the grand search continues back.

LIGR 2 can be preceded by 7 and 16, 18,2224, 26. The sequence 7 -2 -7

. 1Taadw

is 1T + 3Td + 3Tdbd and 3Tdbda <+ {1Tdbd’9

an RCS. Continuing back gives the sequence 2 -7 -2 -7 which is 3T < 3Tbdbd.
1Tcaada

The backward search gives 3Tbdbda <— ¢ 3Tbadbd for which it is easy to check
2Tbadbc

that actually both the d’s must be b’s (if either of them are a a proper subset

of the results are obtained and if both are b all these results are obtained) so

this gives the two LIGR’s 22 and 23 and an RCS so the search continues back.

Therefore 7-2-7-2-7 is 1T < 3Tdbdbd and the backward search gives

giving the LIGR 2 again and

1Tccaada
2Tacdada
3Tdbdbdw < 1Tdcaada < { 1Tabaddo . (78)
3Tdcbdbd
2Tdcbdbc

together with LIGR’s 2,22, 23 that are ignored as a result of the first substi-

tution in (7).
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Every possible combination of the d’s in the starting CS 3Tdbdbd being a
or b gives a result that is included here and all the results here are obtained
if all these d’s are b. Two of the RCS’s cannot lead to LIGR’s because of
Lemma [6.5]so the remaining results are the RCS 1Tabadda and the other two
results which can be shortened to LIGR’s 24 and 25. In order to obtain these
the rightmost two of the d’s in the starting CS must be b, thus the final result
of the backward search from 3Tdbdbda is 1Tabadda and LIGR’s 2,22 — 25.

Continuing the grand backward search gives (2-7)2 which is 3T <+— 3Tbdbdbd.
Applying F to this gives, using the previous RCS, 3Tbdbdbd« <— 1Tbabadda
1Tcabadda and no extra LIGR’s. Continuing the grand backward search gives
7-(2-7)% which is 1T + 3Tdbdbdbd. Applying F starts with 3Tdbdbdbda <
1Tdcabadda <. As before the effect of this substitution is to ignore all the
LIGR’s obtained hitherto that must be included later. As above getting all
these results requires the two middle d’s to be b and is independent of whether
the first d is a or b because it cannot be altered and will be removed in ob-
taining the LIGR’s at this stage, so these three d’s can be put equal to b so
there are just 2 cases, the last d is a or b. For case a, there are many RCS’s
all of which are ruled out by Lemma and 43 CS’s that give the LIGR’s
2,15 — 19. For case b there are fewer RCS’s all of which are again ruled out
by Lemma [6.5] and CS’s that give LIGR’s 2,22 — 27. These calculations are
rather tedious but straightforward and easily done with the program [4]. The
next sequences in the grand search {16,18,22,24,26} - (2-7)315-(7-2)%- 7,
{16,18,22,24,26} - (2-7)?, 15-7 -2 -7 and 26 - 2 - 7 all have in common,
entries in column 2 of Table [3| origins of the form ... + 3T...(db)3d. As
shown above these are all special cases of CS’s to which when F is applied
result in LIGR’s 2,15 — 19,22 — 27 and no usable RCS’s. Therefore no
LIGR’s other than these can result from applying F to any of these sequences.
The sequence 16 - 2 - 7 is 3Tb%a < 3Tca®*dbdbd and applying F gives (using
(78)) 3Tca*dbdbda + 1Tca’abadda which cannot be continued back, and the
ba

LIGR’s 2,22 — 25. The sequence 18 - 2 - 7 gives 3Tb°a < 3Tcd {cb

}dbdbg.

. o . b
Applying the same substitution to start gives 1Tcd {c’i

the top part cannot be continued back, together with LIGR’s 2,22 — 25. For
the bottom part the starting point 3Tcdcbdbdbd can be systematically done
as follows.

abadda from which

1T*abdb

2T*aada (79)

3T*abdo <+ {

where the first result just gives LIGR 2 and the second cannot be continued
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back. Also the following is easily derived:

3T*acbdbd
2T*acbdbc
2T*abadbc
3T*abadbd

3T"abbbda (80)

and the LIGR 2 i.e. LIGR’s 2,22 — 25. The remaining cases 3T*cdcb®da give
results that can be deduced from the result for 3T(db)%d above which always
gives results in 2,15 — 19,22 — 27. This is because there are no longer and
RCS’s so the leftmost d is never reached so can be repalced by any symbols
giving the same results. Pulling all this together shows that 18 -2 -7 always
gives results in this same set 2,156 — 19,22 — 27.

22 -2 -7 is 3Tbbb < 3Tadbdbd. Taking into account and the
remaining results of the backward search are from 3Tab*d. From ([78),
and as well, this gives altogether 1Taabadda which cannot be continued
back and LIGR’s 2,22 — 25.

24 -2 -7 gives rise to the RCS’s 3Tcbdbdbd. Taking out the subcases given
by and the remaining cases are from 3Tcb®d which gives LIGR’s
2,15 — 19,22 — 27 because Lemma by replacing the symbol d next to T
by c, so the final result is LIGR’s 2,15 — 19,22 — 27. 26 - 2 - 7 can have the
backward search F done in the same way giving the same result. For 15 -7
the same approach starts with taking out the cases with and leaving
3Tc (:Z b*d. The top part can be treated as above with the same result
and the bottom part gives LIGR’s 2,22 — 25 as in the analysis of 22 -2 - 7.
Combining all these results just gives LIGR’s 2,15 — 19,22 — 27.

The bottom part < 1Tcdccabadda which is a special case of 1Tcabadda
mentioned above just prior to the analysis of 7 - (2 - 7)%. In this analysis
only LIGR’s and RCS’s are produced that are ruled out by Lemma for
generating LIGR’s? See Lemma 22 - 2 -7 gives 3Tadbdbd. The above
analysis for 3Tbdbdbd gives LIGR’s 2,22 — 25 therefore by Lemma the
same set of LIGR’s is produced from the analysis of F applied to 3Tadbdbd.
The RCS’s: 1Tcabadda forward 1 step gives 1Tbabadda. Replace the first a
by b and continue forward gives 1Tabadda — 1Tababaa so I suggest to get
the new set of RCS’s is to take the original ones, go forward 1 step, replace
the symbol next to T then go forward and backward to find other RCS’s with
the pointer in this same position one from the end and go back over replaced
symbol if possible by a reverse step to get the new RCS’s.

ocsickioiok* which cannot be continued further back, because there are
no RCS’s and no new LIGR’s so this branch of the grand search ends. 7(b) -
2 - 7(a) which has the effect 1T <— 3Tbba. The backward search is 3Tbbaa <
2Tbaaa < 1Taaa« i.e. there are no new LIGR’s and one RCS. Continuing
back gives 2-7(b) - 27 with the effect 3T <— 3Tbbba with the backward search
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giving only the following result
3Tbbbaa < 1Tcaaac. (81)

This again gives one RCS and no new LIGR’s. Continuing, the sequence
7-2-7(b)-2-7 has the effect 1T < 3Tabbba with backward search that gives
no RCS and no new LIGR after 3 steps and using .

By now it seems that a clear pattern has emerged with LIGR’s 2 and 7(b)
alternating, and with LIGR 7 terminating the sequences, however it is not yet
clear how an induction proof can be completed showing this generally. At-
tempts to do so initially failed with the wrong inductive hypothesis because
insufficient symbols were used. These attempts forced a consideration of fur-
ther iterations of the basic procedure as follows.

The sequence 7(b)-2-7(b)-2-7 has the effect 1T +— 3Tbbbba with backward
search results using for the first step giving

1Tccaaaa
3Tb*ac < 1Tbcaaaa «+ { 2Tacdaac . (82)
1Tabadaa

Here there are three RCS’s and no new LIGR’s but the first two of these can
be discontinued because Lemma implies that these RCS’s cannot lead to
new LIGR’s.

Continuing gives the sequence 2-7(b)-2-7(b)-2-7 with the effect 3T < 3Tb°a
and the backward search started using gives

3Tb%aq < 1Tbabadaa < 1Tcabadaa. (83)
Continuing gives the sequence 7(b)-2-7(b)-2-7(b)-2-7 with effect 1T < 3Tba.

The results of the backward search AF; and F, for 7(b)-2-7(b)-2-7(b)-2-7
are given by

,
1Tbc {db} dbdb
aa

3d

ba 3d
kacd {cb} db {29}

These results are clearly very important and to make them quite clear they
will be expressed as

3Tb%aq « 1Tbcabadaa < { Tbeaddb {29} (84)

Lemma 6.10. Fvery reverse computation path represented in the second
part of leads either to one of the RHS’s which when expressed with the
least number of symbols gives one of the set of LIGR’s 15—19 or ends at a point
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where no further reverse computation steps are possible or (by Lemma to a
CS where no reverse computation path can lead to the symbol o (giving a LIGR)
regardless of how many more symbols are added on the left i.e. regardless of
how many LIGR’s are prepended to the the sequence being considered. This
includes the single reverse TM step to the left. Thus no useful RCS’s are
produced.

Note that whenever there are multiple arrays with alternatives in the same
expression in , the alternatives can all be chosen independently of each
other. LIGR’s 15— 19 seem to be much deeper results not obtainable from the
simpler technique based on unless much longer sequences are considered
that will require a lot more resources (time and memory space) to find that
earlier method.

Next consider the sequence 15 - 7(b) -2 -7(b) - 2 - 7(a) with effect

db db
5 4 . . .
3Tb%a < 1Tc {aa} dbdb < 3Tc {aa} dbdbb*a. Applying F using (83)) gives

3Tc :z dbdb®ac < 1Tc ;ﬂ; dbdcabadaa < .... If the next reverse TM
step is left then by Lemma no more LIGR’s can result from it, so this
branch can be discontinued. This can only happen if d = b. If d = a the same
result holds because of Lemma [6.10] Consider 16 -2-7(b) -2 - 7(a) giving

3Tb%a < 3Tca®dbd + 3Tca®dbdb3a. F gives 3Tca®dbdb®ac < 1Tca*dcabadan
using if the rightmost d = b. This by Lemma gives no new re-
sults. If that d = a the backward search gives starting from 3Tca®dbab®acr <
1Tca®dbaca’a (by (8I)) gives just 2Tca®dbabadac after 6 steps and stops so
there are no new RCS’s or LIGR’s produced. Starting from 23-2-7(b)-2-7(a)
ba ba
b dbd ¢ 3Tcd b
clearly produced because the last 7 symbols are the same as the case above
and the pointer does not leave this set during these computations. Consider

which is 3Tb%a ¢ 3Tcd }dbdb3g the same result is

. . db .
20 - 7(b) - 2 - 7 giving 3Tb%a « 3Tc {aa} dbdbbba and F gives the same re-
sult. 21 -2 -7 gives 3Tb°a < 3Tca®dbd < 3Tca®dbdba. All the results
. . . db
terminate giving no new results. 23 -2 -7 is 3Tb°a < 3Tcd{aa} dbd <+

db . . . .
3Tcd {aa} dbdba. Again F gives no results. The same applies to 15-7(a) i.e.
db db
3Tb%a + 1Tc { } dbdb < 3Tc { } dbdba.
aa aa

3Tdbdbacx <— 1Tabadaa. (85)

Only if both d’s are b does this work so it is actually 3Tb*a +- 1Tabada. From
this it follows that F applied to 17 - 3 - 7 leads to no results.
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6.5.8 Sequences ending with LIGR 7(b)

LIGR 7(b) is 1T « 3Tb and 3Tba & 1Tbb which shortens to LIGR 2 i.e.

7(b) = 2. LIGR 7(b) can only be preceded by LIGR 2 and 15. The sequence
2 - 7(b) which has the effect 3T < 3Tbb and 3Tbba < 2Taba an RCS, in
addition to 2 as above, so the preceding LIGR needs to be considered i.e. 7,
7(b), 16, 18/19, 22, 24 and 26. The sequence 7(a) - 2 - 7(b) has the effect
1T ¢ 3Ta < 3Tabb and

3Tabba < 2Taaba (86)

from which no reverse TM step can be made so ...7(a) -2 - 7(b) — 2 and no
further extensions to the sequence are necessary. The sequence 7(b) - 2 - 7(b)
has the effect 1T < 3Tbbb and the backward search gives 3Tbbba < 1Taaba
an RCS only, so the next sequence to be considered is 2 - 7(b) - 2 - 7(b) which
has the effect 3T <— 3Tbbbb. The backward search gives

1Tcaaba
3Tbbbba < { 3Tbadbd (87)
2Tbadbc

giving 1 RCS and 6 new LIGR’s but only two using the abbreviation d, which
3Tadbd
2Tadbc
is 1T «— 3Ta < 3Tab’b. F gives (AF;)

are 3Tbbb < which are 22 and 23 respectively. 7-2-7(b) -2 - 7(b)

3 3Tacbdbd
3Tab’bar {2Tacb dbe (88)
which can be shortened to 3Tb®bar < 3Tcbdbd which are LIGR’s 24 and 25
2Tcbdbc
respectively. 7(b)-2-7(b)-2-7(b) is 1T < 3Tb + 3Tb*b. F gives 3Tb*ba +
1Tabadba
1Tbcaaba < { 2Tcbdbc giving one RCS and two LIGR’s which are 24 and
3Tcbdbd

25 again. (2-7(b))? is 3T < 1Tb < 3Tb°b. F gives
3Tb®bar < 1Tbabadba < 1Tcabadba (89)
i.e. just one RCS. 7(a) - (2-7(b))? is 1T +— 3Ta < 3Tab®b. Applying F gives

3Tacadbdbd

2Tacadbdbc (90)

3Tab’ba + 1Tacabadba {

which can be shortened by taking out the first a giving the LIGR’s 30 and 31.
At this point it will be useful to note that whatever symbol is put in place of
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the first a (absorbed into T below), if the pointer reaches that position in one
step, the ca by Lemma will prevent the pointer ever reaching o so no new
LIGR’s can result regardless of extra preceding LIGR’s considered at the start.
If the reversed TM could start by going right and then get to the position of
the first a then this would have been indicated as an RCS in (90) which did
not occur therefore

Lemma 6.11. starting the backward search from 3Tb%bar gives no additional
LIGR’s i.e. AF; = 0.

Consider 7(b)-(2-7(b))® which is 1T < 3Tb. Applying F gives a result very
similar to the one above because just the first a is replaced by b. The search
tree above has just two places where the pointer gets to the second symbol and
could bring the first b into play. In both these case the second symbol is c.
This ensures that a left reverse TM step would give a CS with cx to the right
of the pointer and from there by Lemma no continuation of the backward
search with extra prepended LIGR’s could give a new LIGR, so these branches
should be discontinued. If the pointer goes right in these cases the results will
be the same as above but with the first a replaced by b giving the same new
LIGR’s again and no RCS’s. Again the same results are obtained if (2-7(b))?
is preceded by 18/19, 22, 24 and 26. Next consider 15-7(b)-2-7(b) -2 7(b)

db} dbdb « 3Tc {db

which has the effect 3Tb°a < 1Tc {aa aa} dbdbb*b. Applying

F gives

3Tc {db} dbdbb*bar +— 1Tc {i’} dbdbabadba +— 1Tc {22} dbdcabadba

aa

(91)
which by similarly to how was used, cannot lead to any new LIGR’s
just 30 and 31 again and no RCS’s other than those that do not lead to any
more LIGR’s. Consider the sequences {16,18/19,22,24,26}-2-7(b)-2-7(Db).
It is easy to show that all these when F is applied, lead to special cases of
3Tdbdb®b. Referring the beginning of Section [6.5] if the rightmost d is a, j1
is 2 for 6 results and 3 for 6 results giving results which must be the same
as 26 and 27 (for j1 = 2) and 24 and 25 for j1 = 3. If both d’s are b the
results of the backward search can be written compactly as 3Tbcadbdbd and
2Tbcadbdbc, which because j1 = 5 can be shortened to length 7 giving the
LIGR’s which must be the same as 26 and 27.

. D db
Consider the sequence 15-7(b)-2-7(b) which is 3Tb%a «+ 1Tc {aa} dbdb <

3Tc zz dbdbbbb. For applying F, parts of this have already been done.
Using (88)) if the last d is a, F gives first LIGR’s 24 and 25 with substrings
of this obtained by truncating from the left having already been taken into
account. Otherwise if the second to last d is a gives LIGR’s 26 and 27.
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Also if it is b again the same LIGR’s are obtained by applying the paragraph
in the analysis of 7(b)-(2-7(b))3. There are no new RCS’s or LIGR’s. Consider
applying F to

{16,18/19,22, 24,26} - 2 - 7(b). (92)

The effect of these all have in common the following symbols in the CS in the
rhs’s: 3dbdbb so try the reverse search starting from 3dbdbba. If the second
d is a it stops after one reverse step as in . Otherwise if the first d is
a it leads to LIGR’s 26 and 27 and in addition LIGR’s 24 and 25 by (88).
Some of the effects of have in common 3ab*b and 3ab*ba < laabadbo
where the reversed TM stops. Tb°ba by Lemma leads to no new LIGR’s
or RCS’s. These results account for all possibilities in so none of these
gives rise to new LIGR’s or RCS’s. Consider 20 - 7(b) having effect 3Tb%*a

aa aa
above argument shows that no new results can emerge.

1Tc {db} dbdb < 3Tc {db} dbdbb. These rhs’s are all of the form 3dbdbb so

6.5.9 Sequences ending with LIGR > 8

In Table [3] if the there are --- in column 1, anything in column 3 will exclude
RCS’s that have been followed up and are also included in that row, so for
example if column 3 had () then no follow up results are needed in other rows
just as if column 1 had no ---.

b
LIGR 8 is 3T < 3cT and 3acT T 2acT shortens to 4 and 8 so ...8 —
< 3ccT

{4,8} but because the left end symbol of T is not specified, specialising it by
including previous LIGR’s could generate more results. 8 -8 is 3T «— 3cT <
3ccT and 3accT gives nothing new so ...8-8 — {4,8}. Similarly it follows
that 10 - 8 under F produce no new results, so ...{8,10} -8 = {4,8}. In a
similar manner also the following can be easily established ... {9} = {1,5}

.. {10} 5 {4,8)

{11} 5 {3}

{12} 5 {1,5}

{13 5 {3}
{14} 5 {1,5}
In all these cases, F produces results that cannot that when specialised to the
cases where T has particular forms generate any new LIGR’s from them. This
results from the pointer not reaching next to the arbitrary string T at any point
in these derivations. These are examples of the absence of RCS’s in the result
of F not giving any new LIGR’s by specialising the original LIGR sequence by
preceding it with another LIGR.

LIGR 24 can be preceded by 7(b),18/19,24,26. 7(b) preceding 24 makes
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no difference to the result because 7(b)-24 has the effect 1T <— 3Tb < 3T*cbdbd
only if T ends in bbb i.e. T = T*bbb. Because 18/19 in 18/19 - 24 must have

. . . b .
the origin in state 3, its effect is 3Tb%a < 3Tcd {cz} dbd < 3T*cbdbd with

T* = Tcdc i.e. 3Tcdccbdbd and 24-24 is 3Tb®b < 3Tcbdbd < 3T*cbdbd where
T* = Tc i.e. 3Tccbdbd. Likewise 26 - 24 is 3Tb°b +— 3Tcadcbdbd. Also in each
of these the second d from the right must actually be b otherwise no RCS’s are
obtained by Lemma [6.4f Thus these results are all special cases of 3Tccbbbd
and 3Tcadcbbbd which need F to be applied to them in Table[3] To make this
easier a computer program [4] was written based on a slightly modified version
of the function “origins” appearing in [5] to obtain the results of all possible
backward searches with the TM starting from any given input CS. This showed
that the following CS’s gave or not RCS’s as follows starting from 3Tccbbbd.
The case when d = b gives

3Tccbbbb yes

3Taccbbbb no

3Tbccb®b yes

3Tabccb®b no

3Tbbccb?b yes

3Tabbccb®b no

3Tbbbccb®b no

3Tcbbecb®b no

3Tcbeeb®b no

3Tcccb®b yes

3Tac®*b®b no

3Tbc®b%b yes

3Tabc®b®b no

3Tbbc®b3b yes

3Tabbc®b®b no

3Tbbbc®b3b no

3Tcbbe®b3b no

3Tcbceb®b no

3Tc*bb yes etc.

This sequence of results was obtained by systematically searching in a similar
manner to the main argument in section 5.5. By this point it looks as if a
cycle could have been obtained. The reason for this was not difficult to find,
it is because 3Tccbbbba «— 2Tbbbadba (only this RCS because of Lemma
together with LIGR’s 2,22 — 25 identified by using the j1 values, and it is
possible to substitute T = T*c® and derive

2T*c®bbbadba +— 2T*bb*2adba

1T 2bb otc. (1 RCS and LIGR’s 2,22—25)

(93)

3T*c* bbb {

for all n > 0.
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Also going back gives 3T*ac®?b®ba < no RCS’s,

3T*bc™?b3bar <+ 1T*ab* adba (1 RCS), and going back gives
3T*abc™*2b%ba < no RCS’s by Lemma [6.4]

3T*bbc™2b’bar +— 1T*cab™ 3adba (1 RCS), and going back gives
3T*abbc™?b%ba <~ no RCS’s by Lemma [6.4]

1Tccab®* 3adba
1Tbcbb* 3adba
2Tacdb* 2adba
1Tbccb* 3adba

1T*cccb*3adba
3T*cbbc®b3bar <— { 3T*ccdb™ 3adbar (no usable RCS’s)

1T*ccbb*3adba
3T*cbc™2b%bar «+— 1T*cab™ 3adba (no RCS’s).
3T*cc?b%ba i.e. with n increased by 1.
In each of these short derivations only a few reverse steps of the TM are
needed where as always Lemma [6.4) and Lemma rule out continuing on
many branches (each branch is represented by a final CS to help verify the
results). All possible RCS’s are indicated at each stage and no more LIGR’s
were found.

To find the RCS’s associated with 3T*cc®™?b%bay, the last CS to be exam-
ined, this is the same as the CS on the LHS of with n increased by 1. This
results in an infinite regress showing that no LIGR’s result from 3T*c*"?b%ba
other than those found at the start i.e. 2,22 — 25.

The same type of argument can be applied to the case where the last d is
a. This time the negative results for RCS’s for the case where the starting CS
contains any a’s (see Lemma will not be mentioned.
1Tc*?b3ab
3Tc*?badac
3Tc* ccda’a
2Tbb*2adac
Going back gives 3Tbc* ?b%aa +— 1Tab*"3adac (1 RCS)
Going back gives 3Tbbc* ?b%aa «— 1Tcab* adaa (1 RCS)

3T*b3c™ ?b%bar + (no usable RCS’s)

3Tc™?blaq + i.e. 1 LIGR (2) and 1 RCS

1Tccab®* 3adaa
n+3
Going back gives 3Tb3c* ?b%aar < fiizgzn +3zgzg (no usable RCS’s)
1Tbccb*3adan
3Tccdn*adac
3Tcb?c™ ?b%aqr +— ¢ 1Tccbb™ Padaa (no usable RCS’s)
1Tcccb*3adaa

3Tcbc?bac + 1Tcab™ 3adac (no RCS’s)

3Tc* 3b3aq is as above with n — n + 1 showing in all that only 1 LIGR (2)
results from 3Tc*™?b3aq for an arbitrary string T. Applying a similar argument
to 3Tcadcbbbd does not yield any RCS’s regardless of whether either d is a or
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b. In all of these results the LIGR’s generated are the same 2,22 — 25 because
these results have j1 = 0,2 or 3 only and these LIGR’s must be obtained
because the starting CS is of the form 3T*bbbb. This shows that any sequence
of LIGR’s ending with 24 under F only gives LIGR’s 2,22 —25. The remaining
results in Table [3| were obtained with the program [4] but could be obtained
similarly to the above.

This version of the table is cut down to the minimum. The last but one
column gives just all RCS’s.

Table 3: The RCS’s and LIGR’s resulting from F applied to sequences of
LIGR’s

The RCS’s
Possible sequences s excluding s
of LIGR’s It’s effect those because of LIGR’s produced by F
Lemmas and
1 oT & 1aT lacaT 3
4.1 3T & 2aT & 1aaT 3aadT 3
8-4-1 3T < 3cT + laacT 0 3
10-4-1 1caT + 3ccdT < laaccdT 1] 3
21-4-1 1cabcT < 3ccedcT <+ 1§ac3dcT 1] 3
5.1 2T < 2bT « 1abT 0 3
9-1 1caT < 2acdT < laacdT 1] 3
12-1 1caaT < 2bbadT <— labbadT 1] 3
14 -1 1ccT < 2bbcT < 1labbcT 0 3
20-1 1cabcT < 2accdcT < laaccdcT () 3
b 3Tbda
2 3T + 1Tb {QTbca {6,7}
7.2 1T & 3Td + 1Tdb 1Tcba {6,7}
2.7-2 3T & 1Tb « 1Tbbb 1Tccba {6,7}
3Tb%a < 1Tc {‘;2} dbdb
15-7-2 db 0 {6,7}
+— 1Tc {aa} dbdbbb
3Tb%a «+ 3Tc {22} dbdbb
16 -2 b 0 {6,7}
+— 1Tc {aa} dbdbbb
5 ba
3Tb%a - 3Tcd § oy, ¢ dbd
18-2 b 0 {6,7}
a
1Tcd {Cb dbdb
{22,24,26} -2 < 1T*dbdb {6,7}
3 1T & 1cT taccT 3
1-3 2T < 1aT < 1caT 3oacdT 3
4.1-3 3T < 2aT < 1caaT 3acbdT {3,9,10}
8-4-1-3 3T + 3¢cT «+ 1caacT 0 {3,9,10,11,12}
1caT < 3ccdT
10-4-1-3 < 1caaccdT 0 {3,9,10,11,12}
1cabcT < 3ccedcT
21-4-1-3 < 1caactdeT 0 {3,9,10,11,12}
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5-1-3
4-5-1-3
8-4-5-1-3
10-4-5-1-3

21-4-5-1-3
5-5-1-3
9:-5-1-3
12-5-1-3
14-5-1-3

20-5-1-3
9-1-3
12-1-3
20-1-3
3-3
1-3-3
3-3-3
11-3
13-3
3-13-3
3-3-13-3
1-3:3-13-3

{3,11,13}
-3-3.13.3

4
8-4
10-4
21-4

5

{4,5,9,12,14,20} - 5

6
{2,15} -6

N NN NN N

7
2

727
2

0w N N N NN

N~ NN NN NN N
[N . . .

— O

~r

N 5

TN

~ N

—

@N

B

15.7-2-7-2-7
16-2-7-2-7

ST7-2-7

2T <— 2bT < 1cabT

3T < 2aT < 1cabaT

3T <— 3cT < 1cabacT

1caT < 3ccdT < 1lcabaccdT

1cabceT 3§czdcT
+— 1gabac3dcT
2T < 2bT < 1cabbT

1caT < 2acdT < lcabacdT
1caaT < 2bbadT < 1lcab®adT
1ccT 4 2bbceT + 1cab3cT

1cabcT < 2accdcT
< 1lcabaccdcT

1caT < 2acdT < 1lcaacdT
1caaT < 2bbadT < lcabbadT

1cabcT < 2accdcT
< 1lcabaccdcT

1T & 1cT + 1ccT
oT & 1aT « 1ccaT

1T @ 1cT < 1cccT

1caaT < labadT < 1cabadT
1ccT < 1labcT < 1cabcT
1cT < 1ccT < 1cabcT

1T < 1cT < 1cabcT

2T < 1aT < 1cabcaT

1T < 1cT < 1cabccT

3T <— 2aT
3T < 3cT «+ 2acT
1caT < 3ccdT < 2accdT

1cabceT < 3cccdceT +— 2gc3dcT

2T < 2bT
3T+ 2aT« 2b...T
1T « 2Tc

3T < 1Tb  2T...bc
1T « 3Td

3T + 1Tb < 3Tbd

1T ¢ 3Ta <« 3Tdbd
3T < 3Tbdbd

1T < 3Tdbdbd

3T « 3Tbdbdbd

1T + 3Tdbdbdbd

+ 3T(bd)3d
1T <+ 3Tdbdbdba

1T «+ 3Tdbdbdbb

3Tb%a «+ 3Tc iig} dbdbdbdbd
3Tb%a < 3Tca’dbdbdbd

1lacdbT
3acdbdT
2acadbceT

SN TR ST S T O )

2accT
0

0
lacdbdbT
2acdbceT
2acdbceT
2acdbceT

aaT
abT

aaT
abT

0
0
{1
2
0
0
0
{1
2
0
0
0
1Tdb
2Tado
1Taado
1Tcaada
1Tabadda

1Tcabadda
0

0
0
0

=
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{3,9,10}
{3,9,10}
{3,9,10}
{3,9,10}

{3,9,10}
{3,9,10}
{3,9,10}
{3,9,10}
{3,9,10}

{3,9,10}
{3,9,10,11,12}
{3,9,10}

{37 9’ 10}

{3}
{3,13,14}
{3,13,14}
{9, 10}
{9, 10}
{9, 10}
{9, 10}

{9,10,20,21}

{9,10,20,21}

{1,8}
{1.8}
{18}
{1,8}

{1,5}

{1,5}

0

0

{2}

{2}

{2}

{2,22,23}

{2,22 — 25}

{2,22 — 25}
{2,15 — 19,22 — 27}
{2,15 — 19,22 — 27}
{2,15 — 19}
{2,22 — 27}
{2,15 — 19,22 — 27}
{2,15 — 19,22 — 27}



Developments in the analysis technique for non-terminating Turing Machines

{187
.9

15

16 -

18-
22
24 -
26 -

15 -

{16,18,22, 24,
26}

2
7
.7
2

27

N NN

~ N N~

2

2
2.
7

4,26}

7
7

{16, 18,22,

24,26} -2-7

8

{8,10,21} - 8

9

10
11
12
13
14

15
16
17

18

19
20
21
22
23

25

- 26

27

3Tb®d < 3Tcd...dbdbdbd

a.
3Tb%a < 3Tcadbdbd

3Tb®%a < 3Tc id;’} dbdbdbd

ba
cb

3Tbbb + 3Tadbdbd

3Tb%a < 3Tcd dbdbd

3Tb%b < 3Tcbdbdbd
3Tb%b < 3Tcadbdbdbd

db

5

3Tb%a + 3Tc aa} dbdbd
+ 3Tab*b

< 3Tcb®b

< 3T---db°b
< 3...~ddbdbb

3T < 3cT

< 3ccT

1caT < 2acdT
1caT < 3ccdT
1caaT < labadT
1caaT < 2bbadT
1ccT < labcT
1ccT < 2bbcT

a

3Tb%a + 1Tc idZ} dbdb
3Tb%a < 3Tca’dbd

3Tb%a < 2Tcaddbc
ba
cb

ba
cb

1cabcT < 2accdcT

3Tb%a + 3Tcd dbd

3Tb%a <+ 2Tcd dbc
1cabcT < 3cccdcT
3Tbbb < 3Tadbd

3Tbbb < 2Tadbc

3Tb%b < 3Tcbdbd

3Tb%b < 2Tcbdbc

3Tb%b +— 3Tcadbdbd
3Tb®b <+ 2Tcadbdbc

=

=

LSS SRR S S T N LSS T ST S U

=

=

LSRR ST S U T R Y

2aacT
3accT

{2,156 — 19,22 — 27}

{2,15 — 19,22 — 27}
{2,15 — 19,22 — 25}

{2,15 — 19,22 — 27}
{2,22 — 27}
{2,15 — 19,22 — 27}

{2,156 — 19,22 — 27}
{2,22 — 25}
{2,22 — 27}

{2,22 — 27}

{2,22 — 27}

{4,8}
{4,8}
{1,8}
{4,8}
{3}

{1,8}
{3}

{1,8}

{6, 7}
{2,22,23}
0

{2,22 — 25}

{2,22 — 25}
{1,5}
{4,8}
{2,22,23}
0

{2,22 — 25}
0

{2,22 — 25}
0
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The set of LIGR’s is

2T & 1aT

3T & 1Tb

1T & 1cT

3T & 2aT

2T < 2bT

1T & 2Tc

1T & 3Td

3T < 3¢T

1caT & 2acdT
1caT < 3ccdT
1caaT & 1abadT
1caaT < 2bbadT
1ccT & 1abcT
1ccT < 2bbcT

© 00 N O O W N =

-
o

=
N

=
oW

[
(2]

db
3Tb%a & 1Tc { } dbdb
aa

(94)
16  3Tb°a < 3Tcadbd

17 3Tb%a < 2Tcaldbe

18  3Tb%a <& 3Tcd dbd

a
cb
19  3Tb%a & 2Tcd EE dbc

20 1cabcT & 2accdcT
21 1cabcT < 3ccedcT
22  3Tbbb <& 3Tadbd

23 3Tbbb < 2Tadbc

24  3Tb%b < 3Tcbdbd
25  3Tb%b < 2Tcbdbe
26  3Tb%b < 3Tcadbdbd
27  3Tb%b < 2Tcadbdbc

Because new LIGR’s have been found, the “can possibly be preceded by”
relation needs to be updated as follows
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1,5 4,5,9,12,14, 20
2 7,16,18,22, 24,26

3 1,3,11,13

4,8 8,10, 21

6,7 2,15

9 — 14,20, 21 3 (95)
15,16,17, 18,19 7

20, 21 3

22,23 7,16,22,24,26

24,25 7,18,24,26

26,27 7

The word “possibly” is included because there may be other symbols in
either of the strings T that prevent a match of the sequences. Note that this
refers to the order of the LIGR’s which is reverse order of the TM computation.

The results summarised in Table [3| show that the set of LIGR’s 1 — 27 is
closed under F and therefore by Theorem these are sufficient to derive all
the IRR’s from the IRR(2).
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Table 4: The table of IGR’s (Table |1) reexpressed in terms of LIGR’s and

RIGR’s

LIGR RIGR
2Ty < 1aT,
3& — 2aTy
1caTy < 2acdT;
1ccTy < 1abcTy é?z :; ?{:}2
1caaTy < 1labadTy -2 -2
1cabcTy < 2accdcTy
1cababTy < 1abbccbTy
1cababcTy < 1labbccacT;
1_aTy —  2bbTy
3Ty < 3cTy 3babT, —» 3.babaT,
1. cTy — 1bbTy
3_baT, — 3bbbT,
2Ty < 2bTy 3babT,  — 3_babal,
1_ababaT, — 3_bababaT,
1To_ —  2T9b_
1& < 3T4d 2T5_ —  3Tyb_
3T,b°. — 3Tpbababa
1To_ — 1T5b_
3To_ —  3Tsc_
1Ty < 2T;c 2Tob_ — BEbc
o 2Toc_ — 1T9bb_
2Tybb.  — 1Tpabc
2To_ — 2Tsc_
3Tsc_ —  2T5bb_
3Tobb_ — 1Tsaba
8Ty < 1Ts1b 3Tycb. —»  3T,bbb_
3T,bbb_ — 3Tybaba
3T2bbbbb_  — 3Tybababa
3_babTs; — 3_babaTy
1_ababTy — 3b°T,
lccTy <= 2bbcTy 1 ababaT, —» 3.bababaT,
1_ababcT, — 3bbbbbcTy
1_abcTy —  1bbbbTy
1caTy < 3ccdTy 3_babT, — 3_babaT,
1_ababaT, — 3_bababaT,
1caaTy < 2bbadT,
1cabcTy < 3cccdcTy 3_babT, — 3_babaT,
1cababT, < 2bbbccbTy 1_ababaT, — 3_bababaT,
1cababcTy < 2bbbccacT;
3T1bbb + 2T ;adbc 3Ty — 3Tsc_

3T1bbb < 3T;adbd

3T,cb_ — 3T,bbb_
3T,b°_ — 3Tybababa

It will be interesting to apply F to these to check for closure. In Table [4] each



Developments in the analysis technique for non-terminating Turing Machines 55

horizontal block is to be interpeted as a set of IGR’s obtained by taking any LIGR
and any RIGR in the block and putting them together to obtain an IGR.
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