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Turing Machines

Abstract

Developments are here described in the analysis technique for non-
terminating Turing Machines (TM’s) that I described earlier. The main
idea is the introduction of IRR patterns i.e. constraints satisfied by
large sets of IRRs (Irreducible Regular Rules) and the logical relation-
ships between them as a result of the general method for deriving IRR’s
from others described in my earlier paper. These logical relationships
will be referred to as IGR’s (IRR Generating Rules). IGR’s have been
reduced to their minimal form in a way analogous to the way in which
regular rules were reduced to IRR’s by taking out symbol strings that
played no essential role. In the case of IGR’s these symbol strings (ac-
tually pairs) will be referred to as context pairs. A new version of my
computer program extending the previous analysis is described and is
freely available that generates these IGR’s up to a given length of IRR’s
that they generate. The results show repetition of the left hand halves
(Left IGR’s or LIGR’s) of IGR’s associated with different right hand
halves. Because the LIGR’s can be derived independently of the right
hand halves of IGR’s, this should be done separately and can be done
using the currently known IRR’s as previously described in my earlier
papers. The LIGR’s can be used to calculate all the IRR’s of a TM.
A procedure for the generation of all the LIGR’s for a TM has been
suggested and is expressed here by a detailed analysis of a TM though
not yet as computer code.
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1 Introduction

This document is a work in progress. As such it is incomplete and still has
errors and omissions. When brought to a state where I cannot easily find any
improvements it will form my next paper on Turing Machine analysis.

Section 2 is a quite dense summary of the previous methods that lays the
foundations of the developments to be described in this paper. Section 3 intro-
duces IRR patterns (IRRP’s) as sets of IGR’s conforming to the pattern. They
have some common symbols in the origin and the RHS of the IRR and allow
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for any LHS. Section 4 introduces IGR’s in terms of IRRP’s and illustrates
the fact that IRR’s of any length can be derived from sequences of IGR’s by
a sequence of substitutions. In Section 5 the detailed description of an IGR is
given and proves the generation of IRR’s from IGR’s. A computer algorithm
is described for generating them all for a TM and its results are shown for
an example TM. In Section 6 a necessary condition in the relation “can be
followed by” for IGR’s is found. Further results are found for the set of IGR’s
that can follow a sequence of IGR’s following each other (i.e. substituted into
each other) hand calculation of which suggests a method for generating all of
them for a TM thugh this appears practically impossible for the example TM
beause of te large number of cases to be considered. In Section 7 left IGR’s
or LIGR’s are introduced because in section 6 the LHS and RHS of an IGR
can be developed independently. An algorithm is illustrated by example for
finding all the LIGR’s for a TM based on the above ideas and results.

A lot of material has been removed to 2017’s Notes on Turing Machines.
These notes are now mostly superseded, but there may be a little there that
is of use.

Comments are welcome. Please send them to john.h.nixon1@gmail.com

2 Basic definitions and summary of the exist-

ing method to generate the IRR’s for a TM

A configuration set (CS) for a TM is a set of complete configurations (tape
symbols with pointer position indicated, and the machine state of the TM)
such that the CS is specified by giving a finite set of symbols in a set of
contiguous pointer positions together with the machine state and such that
the pointer position is where one of the given symbols is given or adjacent to
one. In a CS all possible configurations that are consistent with the specified
symbols and machine state are included. The notation is the specified symbol
string with the pointer indicated by an underscore (it is just off the end of the
symbol string) or an underline and the machine state on the left. For example
with machine states 1,2,3, etc. and symbols lower case letters the following
are CSs: 2abca, 1 aabbcac. The length of the CS is the length of the symbol
string which is finite.

A computation rule or rule is a pair of CS’s linked by → indicating the
forward direction of the computation. A reducible rule is one that has symbols
that play no part in the computation i.e. any extra symbols added on the left or
right of the strings at the left and right hand sides of a computation rule. From
the definitions of regular rules (RR) and irreducible regular rules (IRR) in [1],
any computation of the TM that ends with the pointer just off the end (i.e.
adjacent to a symbol at the end) of the string of symbols specified at the start

http://www.bluesky-home.co.uk/2017_Turing_notes.pdf
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can be represented by RR’s chained together as a sequence of CS’s starting
with one of length 1, where for each step in the chain a new symbol is read at
a position where no symbol has yet been read at the pointer, thus the length
of the string of symbols increases by 1 for each RR unless a stationary cycle
occurs that ends such a sequence. All such CS’s are by definition reachable.
All single TM steps are RR’s. If the RR is of type LR or RL as designated
earlier (now the position of the pointer in the origin (see below) is included so
these are now RLR and LRL respectively) the pointer swaps ends at that step
of the chain and these RR’s are also irreducible RR’s (IRR’s) because if the
pointer swaps ends there are no redundant symbols i.e. the rule is irreducible.
There are also IRR’s that that don’t swap ends. If a CS called “origin” is
included with the LHS and RHS of the IRR it can be written in the triplet
form as origin→ LHS→ RHS for which the abbeviated form origin→→ RHS

will be used if the LHS is not specified hence the changed designation of the
type of an IRR. An origin (there could be many for the same LHS) of an IRR
is a CS obtained by running the TM backwards starting from the LHS to a
point such that the pointer position is at the opposite end of the string from
where it is in the LHS.

If an RR is of type LRR or RLL it is related to an irreducible form (a
possibly shorter IRR which only involves the symbols passed by the pointer
during its execution) as follows. Suppose the RR is represented by m→ n→ o

where m < n < o and n + 1 = o where italics represent the corresponding
pointer positions for the CS’s in typewriter font. Then the RR has type LRR
because the start and end points of the i.e. the LHS and RHS have the pointer
at the right hand end of the string. The rule n → o can be represented as
n′ → p′ → o′ without any redundant symbols where m ≤ p ≤ n < o and
the primes indicate shortening of the strings by deleting the symbols below
position p i.e. p is the leftmost pointer position in the computation from n to
o. n = p holds if and only if n′ = p′ and n′ → o′ is a single TM step. If n ̸= p
the rule n′ → p′ shows that p′ is reachable therefore n′ → p′ → o′ represents
an IRR of type RLR, and of course the mirror image result applies to IRR’s
of type RLL.

In general let X be a member of IRR(n) i.e. the set of all IRR’s with CS’s
of length n. Then X can be represented as A→ B→ C where the pointer swaps
ends between A and B (thus this is either 1 → n or n → 1 and is referred to
as condition 1) to establish the reachability of B necessary for X to be an IRR.
There may be more than one such CS A for a single B and the set of all such
A will be denoted by O1(B) (the same as S(B) in [2]), the 1 referring to the
backward searching algorithm that terminates in condition 1 (see [2] section
2.2). Likewise if it terminates in condition 2 i.e. the pointer comes back to
where it was at the start of the backward search, the set of such endpoints
will be denoted as O2(B), but these do not confer reachability and will not be
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referred to as origins. If the pointer is at the right in A and at the left in B

then at C it can be at the left or right so that X must be represented as either
of the triplet forms n→ 1→ 0 or n→ 1→ n + 1 and having types RLL and
RLR respectively. Likewise if the pointer is at the left in A (the mirror image
forms), X must be represented by either of 1 → n → n + 1 or 1 → n → 0,
having types LRR and LRL respectively.

If B is reachable but forward computaton from it leads to a CS that has
arisen before in this computation, this is an stationary cycle and the type of
the IRR is then of type LC or RC. If the reverse computation path from B leads
to a stationary cycle, then this cycle must include B to avoid a branch point
in the forward computation that would not then be unique. Thus likewise the
IRR is of type LC or RC.

From the definition of RR in the first paragraph of this section, if in the
backward search from the LHS of an IRR, the pointer again reaches the same
position it had in the LHS (condition 2), however much further back the back-
ward search were to continue, it would not be possible from this alone to show
that this LHS is indeed the LHS of an IRR. This is because if the computation
is again run forward, this LHS has the pointer at the same point as a previous
CS and is therefore not shown to be one of the list of CS’s playing the spe-
cial role in the above definition, though it could possibly be shown to be one
as a result of another backward search path. This is the justification of the
terminating condition 2 in the backward search algorithm. See [2] page 30.

This proves that

Lemma 2.1. The triplets 1 → n → 0, 1 → n → n + 1, and n → 1 →
n+ 1, and n→ 1→ 0 representing TM computations each form an IRR (type
LRL, LRR, RLR or RLL respectively) if and only if the origin indicated (the
first member) is the first CS arrived at with the pointer in that position after
tracing the computation back from the LHS (the middle member) and the the
pointer does not occur again in the position it had in the LHS in the reverse
computation path from the LHS i.e there is no other CS 1 or n between the 1

and the n in the triplet forms above. Furthermore any IRR of length n of one
of the types RLL, RLR, LRL, LRR has one of these forms.

Generating all the IRR’s based on Theorem 9.1 of [1] starts with all single
TM steps in the above notation 1 → 0 (i.e. x → x) or 1 → 2 (i.e. x → x )
where x’s represents an arbitrary symbol that could be different for each use.
Every possible single symbol (called α) is added at the pointer position in each
RHS, and in each case the computaton is taken as far as possible to get the
new RHS unless a stationary cycle occurs. The resulting rule LHS→ RHS is an
IRR if it irreducible i.e. connot be expressed with shorter strings of symbols.
In the first case, adding α on the left and continuing the computation as far
as possible gives results either of the form (i) 2→ 1→ 3 or (ii) 2→ 1→ 0 i.e.
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αx→ αx→ xx or xx respectively unless a stationary cycle is obtained. The
results in case (i) are IRR’s by Lemma 2.1 because there can be no other CS’s
between the 2 and the 1 which is a single TM step. The results from (ii) are
IRR’s if and only if the first move beyond the 1 is to 2 i.e. the computation has
the form 2→ 1→ 2→ 0 because this ensures that the rule 1→ 0 contained in
(ii) of length 2 is irreducible. Likewise for the mirror image case starting with
a rule of the form 1→ 2 adding the α on the right and continuing gives results
of the form 1 → 2 → 0 ( ∈ IRR(2)) or of the form 1 → 2 → 3 ( ∈ IRR(2) if
and only if the first move from the 2 is to 1).

Consider extending this to the general case of generating all the IRR Y of
length n + 1 based on the single IRR X of length n ≥ 2 and having the form
n→ 1→ n+1, which can be also be written as A→ B→ C for some CS’s A,B,
and C. First the computation Aα → Bα → Cα holds where α is any symbol
the TM uses. Clearly by Theorems 5.4 and 9.1 of [1] every such IRR Y can
be obtained starting from the LHS Bα if an appropriate α can be found. The
symbol α must be chosen so that Bα is reachable i.e. O1(Bα) ̸= ∅. These are
all the terminal CS’s of length n + 1 from the backward searching algorithm
starting from Bα and ending in condition (1). Each of these branches has a
point where the pointer first reaches n and this CS is Aα because the α has
yet played no part, so O1(Bα) = O1(Aα), thus the backward search algorithm
is applied to Aα, and identifying all possible values of α i.e. the values of α
for which O1(Aα) ̸= ∅ by generating all its origins for each such α. Also the
forward computation from Cα is continued as far as possible to generate the
RHS of Y and hence what its type is (LRR, LRL, RLR, RLL, LRC, or RLC)
the last two cases coming from a stationary cycle in the forward computation
from Cα.

If the pointer is at the left in A and C and the right in B (the mirror image
case) the added arbitrary symbol α will be on the left. This procedure for
generating the all the IRR Y of length n+ 1 like this from an IRR X of length
n, including the mirror image case where the triplet form of X is 1 → n → 0,
will denoted by the function F. F applied to an IRR of type LC or RC is the
empty set. This proves that

Theorem 2.2. Every member of IRR(n + 1) can be obtained using F from
some X ∈ IRR(n) of type RLR or LRL for n ≥ 2. Also, because forward
computation is unique e.g. the RHS of an IRR is uniquely determined by is
LHS, but the origins may be more than one, the sets of IRR obtained like
this for different X (different B) must be disjoint i.e. F−1 applied to a member
of IRR(n + 1) is a unique member of IRR(n). The first part can be written
symbolically as

IRR(n + 1) =
⋃

X∈IRR(n)

{F(X)} (1)
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The following is the general outline showing an IRR triplet of length n
of type RLR (type RLR with origin having the pointer at the right) and the
possible types of result (except the cases where a stationary cycle occurs) of
this argument for a given symbol α that could include a new IRR triplet of
length n + 1.

Cannot be used to
prove reachability of 1

1 →

Proves reachability of 1 n+ 1→

 n→ 1→ n+ 1

{
→ 0 type RLL
→ n+ 2 type RLR

(2)
The 3 central CS’s refer to a member of IRR(n), and the leftmost, central, and
rightmost CS’s refer to the corresponding member of IRR(n+1) if reachability
of the CS 1 in the centre of (2) is found. The corresponding mirror image result
for the LRL case is as follows:

Proves reachability of n+ 1 1 →
Cannot be used to prove
reachability of n+ 1

n+ 1→

 2→ n+1→ 1

{
→ 0 type LRL
→ n+ 2 type LRR

(3)
In this case note that because the α is added on the left, all the pointer
positions in the IRR of length n have been increased by 1 when they appear in
the embedded IRR of length n, so originally they would have been 1→ n→ 0.
The above procedure allows the generation of all the IRR of a TM up to any
given length and has been implemented [3].

3 IRR patterns (IRRP’s) and IGR’s

The derivation of IRR’s from other ones (length n) following the procedure
F described above was found to often take the same form independent of n
provided n is large enough. Then the obvious step is to describe these general
results termed IRR generating rules (IGR’s) so that they can be easily applied
in any given case. These results have an LHS and an RHS and the existence of
a member of IRR(n) matching the LHS implies the existence of a corresponding
member of IRR(n+1) matching each of the parts of the RHS. Each of these
parts and the LHS take the form of a generalised IRR in which the symbol α
appears and two arbitrary strings, T1 in the origin and T2 in the RHS, and the
LHS (middle member) is omitted so that any LHS is matched. These general
forms for the IRR’s were termed IRR patterns (IRRP’s).

The analysis techniques were applied to the following TM (4) which was
generated randomly with 5 states and 5 symbols. This TM, being much larger
than any that I have analysed before, has proved to be a much more challenging
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case.
1a→ 2 d 2a→ 1c 3a→ 4c 4a→ 3 b 5a→ 2 e

1b→ 4 d 2b→ 4 c 3b→ 4 c 4b→ 4b 5b→ 3 e

1c→ 3 a 2c→ 1d 3c→ 2 a 4c→ 3c 5c→ 3a

1d→ 2b 2d→ 1a 3d→ 5 c 4d→ 5 c 5d→ 4 a

1e→ 2b 2e→ 3 c 3e→ 3b 4e→ 5a 5e→ 3a

(4)

For example it is known that at least one IRR for this TM matches

1daT1 →→ 4 caT2. (5)

Using backward TM steps from (4) gives

deriving the origin old RHS RHS α
αA αC

1αdaT1


α=a← 2ddaT1
α=c← 2adaT1
α=d← 2cdaT1

4acaT2
4ccaT2
4dcaT2

3 bcaT2
1abcT2
5 ccaT2

a

c

d

(6)

of which the result for α = c has an RHS given where the pointer is at the
first symbol of T2. The results of F are written as follows

2ddaT1 →→ 3 bcaT2
2adaT1 →→ 1abcT2
2cdaT1 →→ 5 ccaT2

(7)

for α = a, c, d respectively, and the complete IGR can be written as

1daT1 →→ 4 caT2


a⇒ 2ddaT1 →→ 3 bcaT2
c⇒ 2adaT1 →→ 1abcT2
d⇒ 2cdaT1 →→ 5 ccaT2

(8)

Note that in this argument, adding the arbitrary symbol α on the left
(because the pointer in the origin is on the left) maintains the pointer being
on the right hand end of the string of symbols in the LHS (not shown), and this
property is implicit in an IRRP with the pointer at the left of the origin CS.
The result of this argument is that if an IRR of length n conforms to (5), then
there are 3 more IRR’s of length n + 1 corresponding to (7) for α ∈ {a, c, d}
respectively. The second of these results in (7) has the pointer in the RHS on
the right, so this IRR has type LRR and cannot be used to derive other IRR’s.
These are examples of rules that generate IRR’s of length n + 1 from other
IRR’s of length n. An IGR is defined as a logical implication having an IRRP
on the left and sets of IRRP’s on the right, one set for each value of α and the
logical deduction follows the general procedure outlined in Theorem 2.2. Thus
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the strings with given symbols on the right of the implications are one symbol
longer than those on the left.

To illustrate how an IRR can be derived from a member of IRR(2) and
a sequence of IGR’s, consider the following IRR of length 6 that was chosen
from the computer program output and represented in Origin→ LHS→ RHS
format as follows:

3aecccb→ 1cadbdb→ 2dbdbdb . (9)

The derivation of the first rule of (9) in single TM steps is

3aecccb

4cecccb

5cacccb

3caaccb

2caaacb

1cacacb

2cacdcb

1caddcb

2cadbcb

1cadbdb

. (10)

Each time the pointer moves to where it has not been before while going back-
wards from the LHS, the derivation (10) generates IRR’s as follows, followed
by (9) in triplet and the abbreviated notation:

2cb→ 1db→ 5 cd ∈ IRR(2)
1dcb→ 1bdb→ 3 ecd ∈ IRR(3)
2cdcb→ 1dbdb→ 5 cecd ∈ IRR(4)
4ecccb→ 1adbdb→ 2 ececd ∈ IRR(5)

2cb→→ 5 cd

1dcb→→ 3 ecd

2cdcb→→ 5 cecd

4ecccb→→ 2 ececd

. (11)

This splitting up of the derivation of (9) results from the repeated application
of F to (11).1. The abbreviated forms in (11) can be obtained by applying in
order the following results to the first of these IRR’s 2cb→→ 5 cd.
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2T1 →→ 5 T2
b⇒ 1dT1

1eT1

}
→→ 3 eT2

1T1 →→ 3 T2


a⇒ 2dT1 →→ 4cT2
c⇒ 2aT1 →→ 2 aT2
d⇒ 2cT1 →→ 5 cT2

2cdT1 →→ 5 T2
a⇒

4eccT1
4eecT1
5cadT1
5eadT1

→→ 2 eT2

4T1 →→ 2 eT2
c⇒ 3aT1

4bT1

}
→→ 2dbT2

. (12)

For the initial steps in the derivation of (9), the following subcases of
successive members of (12) need to be applied in this order: 1, 3, 1, 1.

Equation (12) contains examples of IGR’s which allow one IRR to be de-
rived from another by substituting for the T1 and T2 as the example shows,
and express the application of the function F in Theorem 2.2 in a simpler form.
The IGR’s have two lengths, one associated with T1 and one associated with T2
and these are defined as the lengths of the corresponding strings on the RHS
of the IGR thus for example the lengths of the IGR’s in (12) will be donoted
by (1, 1), (1, 1), (3, 1), (1, 2) respectively. The equations (12) are in the shortest
forms possible as can be verified from their derivations.

The symbols above the implication signs are the symbol added next to the
pointer in the origin (α) in the derivation of the IRR’s from other ones as
described in Section 2, and are the first 4 symbols of the LHS of IRR (9) taken
in reverse order. The results on the right in (12) are all the results that can
be derived from their LHS for that value of α and that length, though the
third example is quite complicated and has other values of α ie. b and c with
different lengths of results.

The IRRP on the RHS of the last member of (12) is of type LRR and can
be seen to not generate a new IRR directly. Applying the last member of (12)
to the last IRR of (11) gives the initial result

3aecccb→ 1cadbdb→ 2dbcecd (13)

which is not an IRR. Taking this computation as far a possible has to be an
IRR (in this case having non-extendable type LRR) which is

3aecccb→→ 2dbdbdb (14)

and has α = c and is in agreement with (9). The derivations of (11) and (14)
illustrate the general procedure for deriving any IRR by repeated applications
of F i.e. applying a sequence of IGR’s starting from a member of IRR(2).
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This example suggests that if all the IGR’s needed to generate the IRR(n+
1) from IRR(n) were obtained, these could have lengths much less than n + 1
and be fewer in number than the IRR(n + 1), and this might give a more
compact way to represent the action of the TM. This will be followed up later,
but many details need to be given first.

4 General Definition of IGR’s

The general form of the derivation of an IRR from an existing one (F) can be
expressed in detail as follows. Start with the IRR pattern (IRRP) of type LRL

t1y1 . . . ynT1 →→ t2 z1 . . . znT2 (15)

in which T1 and T2 have been omitted for brevity in much of this section. Here
n ≥ 2 and the t’s are machine states and y’s and z’s are symbols.

Then proceed with F i.e. add the symbol α to both sides where the pointer
is in the RHS then the backward search gives the following types of results (ex-
cluding the stationary cycles) which can be classified according to the rightmost
position j1 of the pointer relative to the symbol y1

t1αy1 . . . yn ←


t′1α

′y1 . . . yn for j1 = 0

t′1α
′y′1 . . . y

′
j1+1yj1+2 . . . yn for 1 ≤ j1 ≤ n − 2

t′1αy
′
1 . . . y

′
n−1y

′
n for j1 = n − 1

(16)

where the primes indicate a possible change in the symbol or state by the TM.
For the case n = 1, j1 must be 0. Note that the form t′1α

′y′1y2 . . . yn cannot
arise because a single backward step to the right followed by two backward
steps to the left could possibly alter y1 and y2 whereas a single backward step
to the left has j1= 0 as above.

The point of the classification is to enumerate all the different types of case
that can arise after all the symbols that are not altered in the derivation are
abstracted out. They are not mentioned explicitly and they form part of an
arbitrary string (in this case T1). The last reverse computation step in the last
case giving j1 = n − 1 cannot not lead to a new IRR because this path and
the CS reached does not imply the reachability of the LHS and so does not
generate an IRR. If the LHS is reachable it must be because there is another
origin with j1 < n − 1. Therefore this case must be omitted for the purpose of
generating IGR’s, so j1 can be restricted to the range 0 ≤ j1 ≤ n − 2.

Similarly, for the computation of the new RHS, the results can be classified
(again excluding stationary cycles) by the rightmost position j2 of the pointer.
So that this parameter also starts at 0, the pointer starts at position 0 at α
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and ends at position -1 if it goes left and ends at position n +1 if it goes right
giving the possibilities

t2αz1 . . . zn →

{
t′2 α′z′1 . . . z

′
j2
zj2+1 . . . zn where 0 ≤ j2 ≤ n or

t′2α
′z′1 . . . z

′
n if j2 = n + 1

. (17)

This works whenever n ≥ 1.
If a stationary cycle occurred in (16) it would be noted, but it would have

no effect on the general form of the possible results except that none of the
forms of endpoint in (16) might result, because a stationary cycle would result
in a closed circuit in the reverse search path from which paths ending in a type
of endpoint in (16) or none could diverge. As noted earlier this would imply
t1αy1 . . . yn is in the closed circuit (to avoid a branch point in the forward
computation implying it is not unique) so the derived IRR would have type
RC. This implies a stationary cycle in the result of (17).

The minimum number of symbols needed for the representation of (16) is
easily seen to be

r1 =

{
1 for j1 = 0
j1 + 2 otherwise

(18)

provided 0 ≤ j1 ≤ n − 2. Similarly, the minimum number of symbols needed
for the representation of the result of (17) is

r2 = min(j2 + 1, n + 1). (19)

The length of an IGR consists of the pair (r1, r2).
From (16) and (17) the remaining four combinations can be summarised as{

t1T1
t1y1 . . . yj1+1T1

}
→→

{
t2 z1 . . . zj2T2
t2 z1 . . . znT2

}
α⇒{

t′1α
′T1

t′1α
′y′1 . . . y

′
j1+1T1

}
→→

{
t′2 α′z′1 . . . z

′
j2
T2

t′2α
′z′1 . . . z

′
nT2

}. (20)

In this statement the top and bottom parts on the left of→→ can be combined
independently with the top and bottom parts on the right of→→ i.e. there are
four combinations possible. Of these the distinctions on the left of →→ do not
change the type of the new IRR this being respectively LRL and LRR for the
top and bottom parts on the right of to→. The IRR”s are also distinguished
by different pairs (j1, j2). The type of an IGR is defined as the type of the IRR
that it generates.

The corresponding right-left reversed results starting from an IRRP of type
RLR also involve the parameters j1 and j2 obtained similarly but counting
leftwards. Thus starting from

t1yn . . . y1 →→ t2zn . . . z1 (21)
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likewise the following types of results are obtained which can be classified
according to the leftmost position relative to y1, (j1) of the pointer. This
satisfies 0 ≤ j1 ≤ n − 1 and gives the following:

t1yn . . . y1α←


t′1yn . . . y1α

′ for j1 = 0

t′1yn . . . yj1+2y
′
j1+1 . . . y

′
1α
′ for 1 ≤ j1 ≤ n − 2

t′1y
′
ny
′
n−1 . . . y

′
1α for j1 = n − 1

(22)

Naturally, (18) and (19) and are still valid and all the types of result in (20)
have corresponding mirror image forms.

These types of result in (20) are expressed with the shortest strings of
symbols possible (i.e. the y’s and z’s). The strings T1 and T2 being arbitrary,
so can be replaced by any strings. They do not have to have the same length.

These together with their left-right reversed forms are all the different types
of IGR’s possible.

Simple examples of these are in (12), and (16) and (17) indicate the general
method for deriving them which is as follows. After the symbol α has been
added to the origins on the left, reverse steps of the TM are made recursively,
making sure that all possible reverse steps at each stage are done and stopping
only when further reverse steps are impossible without the knowledge of what
the strings T1 and T2 are, as described in Section 2.

Thus an IGR is defined to have no redundant symbols where the pointer
does not reach during its derivation. This is analogous to IRR’s being irre-
ducible. In the derivation of the IGR from an IRR of length n, the backward
search to obtain the new origins and in the forward computation to obtain the
new RHS, the pointer can obviously never move outside the strings of lengths
r1 and r2 introduced above except for the last TM step in the forward com-
putation. In addition all these positions of the pointer are reached during the
derivation, the string of length r1 for the derivation of a new origin and the
string of length r2 for the derivation of the new RHS

If the pointer ends up at one end of the string T2 ( indicated by T2), the
pointer position is clear from the context. The pair of strings of symbols
(T1, T2) of lengths (n + 1 − r1, n + 1 − r2) respectively in (20) that are not
passed by the pointer during the derivation of an IGR from an IRR of length
n that is the basis of its LHS will be removed and listed as “context pairs” so
that the result is presented in its minimal form i.e. as an IGR in computer
output.

A IGR could be defined to include all the possible results that can be
derived for any possible value of α (an IGR member), i.e. all the possible
origins for each α, but if there is not likely to be confusion I will refer to such
statements as IGR’s as was done above. Thus an IGR would be the union over
α of the IGR members. An IGR member has the form (IRRP,α) ⇒ set of
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IRRP’s, so the above results in (12) could be described as IGR members. Thus
it would be possible for different RHS’s of the IGR to have different values of
(r1, r2) corresponding to different values of α, but these will be separated into
different IGR’s in the computer output.

There can be a problem that occurs in the computer representation of the
IGR’s after the context strings have been separated out, which is to determine
whether the original IRRP on its left is of type LRL or RLR. Provided n > 1, it
is not immediately obvious which is the case because the pointer positions and
the parameter j1 can be counted going either way, for example compare (16)
with (22). The way it works is that a CS in the computer program output is
represented as CS(t, p, l, string) where t is the machine state, p is the pointer
position counted from the left and is one for the symbol on the left, and is 0
for the position just to the left of this symbol, and is l+1 for the position just
to the right of the string, where l = n is the length of the string. The string
is spelled out inside quote marks in printed output. After the context strings
have been split out of the derived IGR, the pointer position in the origin of
the IRRP set on the LHS of (15) is 1 by convention if the original IRRP (see
(16)) (the LHS of the new IGR) was of type LRL or LRR because the pointer
starts at 1 and is not affected by the truncation of the symbols from the right.
If the original IRRP was of type RLR or RLL, the pointer position in its origin
(LHS of (21)) is initially by convention at n (i.e. the right hand end) and is
reduced as a result of splitting out the context symbols. This for j1 = 0 is
position n minus the length of the string of symbols removed also n i.e. 0, and
is n minus the length of yn . . . yj1+2 otherwise, which is j1 + 1. This value can
never be 1, so the value 1 is characteristic of the original IGR being of type
LRL. This implies that the value p = 1 in an origin CS on the LHS of an IGR
indicates, provided n > 1, that the context strings (T1 and T2) are added on
the right, and on the left otherwise. For the case n = 1 this is obvious from
the RHS of the IRRP on the LHS of the IGR. which is of the form t2 z1 or
t2z1 according to whether the IGR is of type LRL or RLR respectively. This
shows that this obvious convention for defining the pointer positions in the
different cases distinguishes the LRL, LRR from the RLR, RLL types of IGR.

The above argument shows, when combined with Theorem 2.2, that
(1) every IRR of length n + 1 of type RL can be derived by F from another
IRR of length n of type LRL by an IGR with parameters (r1, r2) of type (20).1
(LRL (20)) in satisfying 1 ≤ r1 ≤ n and 1 ≤ r2 ≤ n + 1 as described and
(2) every IRR of length n + 1 of type LRR can be derived by F from another
IRR of length n of type LRL by an IGR of type (20).2 (LRR in (20)) (with
parameters r1 and r2 such that 1 ≤ r1 ≤ n and r2 = n + 1.

These can be applied recursively to show that

Theorem 4.1. any extendable IRR (type LRL or RLR) of length ≥ 3
can be obtained from a member of IRR(2) by a sequence of substitutions of
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IGR’s as described here under case (1). Any non-extendable IRR (type RLL
or LRR) can be obtained from a member of IRR(2) by the above substitutions
(0 or more) followed by a single substitution step under case (2).

This theorem is illustrated by the example at the beginning of this section.
This suggests the obvious process for generating the set of all the IGR’s could
start as follows after finding all the members of IRR(2). Essentially this was
the method used in the latest version of the program [5] to generate Table 1.

Find all the members of IRR(3) and the IGR’s used to generate them from
the IRR(2). These will be IGR’s of lengths (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
and (2, 3). Likewise the IRR(4) can be obtained from the IRR(3) and the
IGR’s summarising this can be added while not duplicating any IGR’s already
found etc.. This can be repeated to generate up to the IRR(n). After a while
hopefully to generate the IRR(n + 1) from the IRR(n) will not require any
IGR’s that have not already been obtained for n sufficiently large.

In the remainder of the paper the following example was studied because
the results from (4) became very complicated.

1a→ 2b

1b→ 3 b

1c→ 1b

2a→ 3b

2b→ 2c

2c→ 1 c

3a→ 1 a

3b→ 1 a

3c→ 3c

(23)

The results for the IGR’s from TM 23 were as follows in Table 1 giving the
maximum length of the computation rules as 10.
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Table 1: IGR’s generated by the computer program

1 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2

2 1caT1 →→ 1 T2
b⇒ 2aca

2acb

}
T1 →→ 3 bT2

3 1caaT1 →→ 1 T2
b⇒ 1abaa

1abab

}
T1 →→ 3 bT2

4 1cababT1 →→ 1 T2
b⇒ 1abbccbT1 →→ 3 bT2

5 1cababcT1 →→ 1 T2
b⇒ 1abbccacT1 →→ 3 bT2

6 1cabcT1 →→ 1 T2
b⇒ 2accac

2accbc

}
T1 →→ 3 bT2

7 1ccT1 →→ 1 T2
b⇒ 1abcT1 →→ 3 bT2

8 2T1 →→ 1 T2
b⇒ 1aT1 →→ 3 bT2

9 3T1 →→ 1 T2
b⇒ 2aT1 →→ 3 bT2

10 3T1 →→ 1 aT2
c⇒ 3cT1 →→ 2bbT2

11 1ccT1 →→ 1 ababT2
c⇒ 2bbcT1 →→ 3bbbbbT2

12 1caT1 →→ 1 ababaT2
c⇒ 3cca

3ccb

}
T1 →→ 3 bababaT2

13 1caaT1 →→ 1 ababaT2
c⇒ 2bbaa

2bbab

}
T1 →→ 3 bababaT2

14 1cababT1 →→ 1 ababaT2
c⇒ 2bbbccbT1 →→ 3 bababaT2

15 1cababcT1 →→ 1 ababaT2
c⇒ 2bbbccacT1 →→ 3 bababaT2

16 1cabcT1 →→ 1 ababaT2
c⇒ 3cccac

3cccbc

}
T1 →→ 3 bababaT2

17 1ccT1 →→ 1 ababaT2
c⇒ 2bbcT1 →→ 3 bababaT2

18 2T1 →→ 1 ababaT2
c⇒ 2bT1 →→ 3 bababaT2

19 1ccT1 →→ 1 ababcT2
c⇒ 2bbcT1 →→ 3bbbbbcT2

20 1caT1 →→ 1 abcT2
c⇒ 3cca

3ccb

}
T1 →→ 1bbbbT2

21 2T1 →→ 1 cT2
c⇒ 2bT1 →→ 1bbT2

22 1T1 →→ 3 T2
b⇒ 1cT1 →→ 1 aT2

23 1caT1 →→ 3 T2
b⇒ 2aca

2acb

}
T1 →→ 1 aT2

24 1caaT1 →→ 3 T2
b⇒ 1abaa

1abab

}
T1 →→ 1 aT2

25 1cababT1 →→ 3 T2
b⇒ 1abbccbT1 →→ 1 aT2

26 1cababcT1 →→ 3 T2
b⇒ 1abbccacT1 →→ 1 aT2

27 1cabcT1 →→ 3 T2
b⇒ 2accac

2accbc

}
T1 →→ 1 aT2

28 1ccT1 →→ 3 T2
b⇒ 1abcT1 →→ 1 aT2

29 2T1 →→ 3 T2
b⇒ 1aT1 →→ 1 aT2

30 3T1 →→ 3 T2
b⇒ 2aT1 →→ 1 aT2

31 2T1 →→ 3 baT2
c⇒ 2bT1 →→ 3bbbT2

32 2caT1 →→ 3 babT2
c⇒ 3cca

3ccb

}
T1 →→ 3 babaT2

33 1caaT1 →→ 3 babT2
c⇒ 2bbaa

2bbab

}
T1 →→ 3 babaT2

34 1cababT1 →→ 3 babT2
c⇒ 2bbbccbT1 →→ 3 babaT2
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35 1cababcT1 →→ 3 babT2
c⇒ 2bbbccacT1 →→ 3 babaT2

36 1cabcT1 →→ 3 babT2
c⇒ 3cccac

3cccbc

}
T1 →→ 3 babaT2

37 1ccT1 →→ 3 babT2
c⇒ 2bbcT1 →→ 3 babaT2

38 2T1 →→ 3 babT2
c⇒ 2bT1 →→ 3 babaT2

39 3T1 →→ 3 babT2
c⇒ 3cT1 →→ 3 babaT2

40 1T1 →→ 1T2

 a⇒ 3T1a
3T1b

}
→→ 2T2b

c⇒ 2T1c→→ 1T2b

41 1T1 →→ 2T2
a⇒ 3T1a

3T1b

}
→→ 3T2b

42 3T1 →→ 2T2
b⇒ 1T1b→→ 2T2c

43 1T1 →→ 3T2
c⇒ 2T1c→→ 3T2c

44 3T1bbb→→ 3T2
c⇒ 2T1aabc

2T1abbc

}
→→ 3T2c

45 1T1 →→ 2T2b
c⇒ 2T1c→→ 3T2bc

46 1T1 →→ 2T2c
c⇒ 2T1c→→ 1T2bb

47 3T1 →→ 3T2c
b⇒ 1T1b→→ 2T2bb

48 1T1 →→ 2T2bb
c⇒ 2T1c→→ 1T2abc

49 3T1 →→ 3T2bb
b⇒ 1T1b→→ 1T2aba

50 3T1 →→ 3T2cb
b⇒ 1T1b→→ 3T2bbb

51 3T1bbb→→ 3T2cb
a⇒

3T1aaba
3T1abba
3T1aabb
3T1abbb

→→ 3T2bbb

52 3T1 →→ 3T2bbb
b⇒ 1T1b→→ 3T2baba

53 1T1 →→ 3T2bbbbb
a⇒ 3T1a

3T1b

}
→→ 3T2bababa

54 3T1 →→ 3T2bbbbb
b⇒ 1T1b→→ 3T2bababa

55 3T1bbb→→ 3T2bbbbb
a⇒

3T1aaba
3T1abba
3T1aabb
3T1abbb

→→ 3T2bababa

Theorem 4.1 demonstrates the importance of derivations of IRR’s using
chains of IGR’s substituted into each other. Connected with this is the relation
‘can be followed by’ which restricts the possible sequences of substitutions of
IGR’s. This is given in Table 2 and requires a match on the LHS and on the
RHS in which the machine state and the symbol strings must match, as well
as the direction for adding α, and the first IGR must be of extendable type i.e.
it must generate IRR’s of type LRL or RLR. In Table 2 the numbers refer to
IGR’s in Table 1. The letters if present refer to the part of the IGR associated
with that letter as the symbol above ⇒ i.e. the symbol called α, otherwise
the whole IGR is referred to. The following number refers to the sub-part of
the IGR with that numbered origin in the RHS of the IGR. On the RHS of
Table 1 (to the right of →) all parts and sub-parts of an IGR referenced are
included. Every IGR on the left of → can be followed by any IGR on the
right of → in the same row.
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Table 2: The relation ‘can be followed by’

1→ 22, 23, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37
3b1, 3b2, 4, 5, 7, 8→ 22

2b1, 2b2, 6b1, 6b2, 9, 13c1, 13c2, 14, 15,
17, 18, 33c1, 33c2, 34, 35, 37, 38

}
→ 29, 31, 38

12c1, 12c2, 16c1, 16c2, 36c1, 36c2, 39→ 30, 39
22→ 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 18, 19
23b1, 23b2, 27b1, 27b2, 30→ 8, 18
24b1, 24b2, 25, 26, 28, 29→ 1
32c1, 32c2→ 29, 38
40a1, 40a2→ 42
41a1→ 49, 50, 52, 54
41a2→ 44, 49, 50, 51, 52, 54, 55
42→ 41, 46
47→ 41, 45, 48
50→ 43, 53
51a1, 51a2, 51a3→ 49, 52, 54
51a4→ 44, 49, 52, 54, 55

By examining these IGR’s in Table 1 and the compatibility relations in
Table 2 the following facts become evident:

1. There are a relatively small number of distinct origins of the LHS’s of
these IGR’s. Each of these together with the value of α gives rise to the
same origin of the RHS of the IGR regardless of the RHS of the LHS
of the IGR. For example 1caT1 with α = b is always associated with
2aca

2acb

}
T1 in IGR’s 2 and 23.

2. IGR’s can be chained together by substitutions for the arbitrary strings
T1 and T2.

3. In the chain of substitutions, there is a restriction on which IGR can fol-
low another IGR; this results from the structure of the IGR’s themselves.
This information is given in Table 2.

4. Other restrictions result from the way in which sequences of substitutions
operate.

5. By carrying out F to the RHS of an IGR, it is sometimes possible to
deduce that no previous IGR’s to a sequence of them can affect which
IGR’s can follow the sequence.

6. If by carrying out F to any sequence of IGR’s to find which IGR’s can
be next in the sequence, there always results IGR’s that have already
been listed, then it would show that the set of IGR’s found is sufficient
to generate all the IRR’s for the TM.

Temporarily disregarding property 1, and in the hope that Table 1 would have
property 6, manual calculation was started beginning with IGR 22 because
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from Table 2, IGR 22 clearly plays an important role. By restricting at first
consideration to IGR 1 followed by IGR 22 denoted by 1 ·22 fewer possibilities
will result for the following IGR’s. It was soon found that this is likely to
get very unwealdy because of the large number of cases to be considered,
Nevertheless is was instructive to try. The first case to be considered was
what IGR’s that can follow 1 · 22? The sequence of IGR’s 1 · 22 is 1T1 →→
1 T2

b⇒ 1cT1 →→ 3 bT2
b⇒ 1ccT1 →→ 1 abT2 obtained by substituting cT1

for T1 and bT2 for T2 in IGR 22. The result of this is a composite IGR. The
IRR’s that it generates are a subset of the IRR’s generated by looking for
which IGR’s follow IGR 22 alone. By trying to apply F to this general form,
results dependent on the arbitrary strings T1 and T2 will be produced. This
starts by considering what CS’s can lead to 1αccT1 for any symbol α. It is
easy to see that

1αccT1

{
α=b← 1cccT1
← 2αccT1

. (24)

in one TM step in either case. The first of these will lead to the IRRP
1cccT1 →→ 3 babT2 because 1babT2 → 3 babT2. The strings ccT1 and abT2
are not changed because the pointer does not enter them in the derivation of

the IRRP, so the IGR used is 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2 i.e. IGR 1

in Table 1. The second result of (24) has reached condition 2 in the back-
ward search if T1 is the empty string, which implies that there is no point in
continuing the backward search further in that case.

If T1 is not the empty string, the general reasoning indicates that T1 needs
to be specialised further by prepending the sequence of IGR’s 1·22 with others,
however the backward search can be logically continued giving

2αccT1 ← 2αbcT1

{
α=b← 1abcT1
α=c← 2bbcT1

(25)

which is independent of T1 because the first of these reverse steps from 2αccT1
cannot lead to any other result than the one indicated (because there is no
TM step ending in 2 β no matter what the symbol β in T1 is). This shows
that if T1 is not the empty string, the result will always be that condition 1 is
reached, giving another IGR.

Returning to the general argument, taking a further step back in the se-
quence of IGR’s to be considered gives for example 22 · 1 · 22. This sequence
gives

1T1 →→ 3 T2
22b⇒ 1cT1 →→ 1 aT2

bb⇒ 1cccT1 →→ 1 abaT2 (26)

the second part of which comes from 1 · 22 above. The symbols above the
symbols ⇒ respectively indicate IGR 22 with α = b and as above (1 · 22)
with two steps of IGR’s with α = b. Applying F to this starts by the backward
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search from 1αcccT1 giving (e.g. using (24))

1αcccT1

← 2αcccT1 ← 2αbccT1

{
b← 1abccT1
c← 2bbccT1

b← 1ccccT1

. (27)

Combining this with 1babaT2 → 3 babaT2 and 1cabaT2 → 3babbT2 and ab-
sorbing any unchanged symbols into T1 or T2 because the pointer has not
reached them gives the results 1, 7 and

1ccT1 →→ 1 abaT2
c⇒ 2bbcT1 →→ 3bbcbT2. (28)

[As an aside comment, Actually 17 is a special case of 11 which is itself a
special case of (28) formed by successively decreasing the length of the string
in the RHS by 1. Because in these three cases, 17 uniquely has the pointer
finishing at the α end of the string in RHS of the RHS, such a sequence as
(28), 11 and 17 cannot be continued by specialising T2 and continuing the
computation to the end in the RHS so any sequence of IGR’s ending with 17]

In 27 because of the absence of a branch of the backward search taking the
pointer to the opposite end of the string from α, it implies that any special
cases of T1 that would result from prior IGR’s in the sequence could not affect
the new origins of IGR’s that could be next in the sequence, only the RHS’s
could vary. This is because the general form of the derivation of a new origin
follows the pattern in (27) whatever substitutes for T1. Because 1 can also be
preceded by 24b1, 24b2, 25, 26, 28, 29, these cases could now be considered
in turn preceding 1 · 22.

These results are very complicated and the way forward seems unclear,
because in the derivation of new IGR’s by applying F, both the new origins then
the new RHS’s have to be found and there are a lot of different combinations
of cases that can arise. Also the number of cases to be considered seems
prohibitively large based on the relation ‘can be followed by’ in Table 2.

5 Further simplification and LIGR’s

Returning to property 1 of Table 1, it appears that the left and right hand
halves of the RHS of each IGR can be derived independently (it is only α that
connects them), and the left hand sides (the origin of the LHS and the origin
of the RHS) have a lot of repetition, many appearing multiple times, thus the
presentation in Table 1 is far from optimal although the list of IGR’s given
there for generating any IRR from the IRR(2) does now seem to be complete
and can can be derived systematically up to any given length of the IRR’s.

What is hinted at above is that there could be an alternative algorithm to
generate the IGR’s directly from each other by applying F in these general cases
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for arbitrary strings T1 and T2. This became extremely complicated because
of dealing with new origins and RHS’s together. It is this that I want to arrive
at by just considering at first the derivation of new origins for the IGR’s, for
which I introduce the new concept of LIGR (Left IGR) because the RHS’s can
always be filled in later just with forward computations.

The aim of this section will be to demonstrate this algorithm before for-
mulating it precisely and hopefully show that if it does come to an end, then
the LIGR’s so obtained from a Turing Machine will be sufficient rules to allow
the computation of all the IRR’s to any level desired. Unfortunately in the
present example it has as yet proved too difficult to complete this analysis.

5.1 LIGR’s

An LIGR or left IGR is the origin of the LHS of an IGR, and the origin of the
RHS of the same IGR, combined with the symbol α. For example IGR’s 2, 23
have the common LIGR

1αcaT1
α=b← 2aca

2acb

}
T1. (29)

Similarly

1αcaT1
α=c← 3cca

3ccb

}
T1 (30)

is common to IGR’s 12 and 20. These examples show that in common with
IGR’s, LIGR’s can have parts (labelled by α) and sub-parts that will be la-
belled in lexicographical order of the strings with the most significant symbol
(sorted first) being where the pointer is. Also the symbol α may be omitted
for brevity because it is always at the opposite end of the string from T1, which
in the context of LIGR’s will be called just T because T2 is not involved. For
example if (29) and (30) are treated as parts of the complete LIGR X then (29)
is X.b and (30) is X.c. The length of an LIGR will be the length of the symbol
string on its right, which is one more than the length of the symbol string on
the left assuming α is ommited. This notation with the reverse facing arrow
will be used because as usual the arrows ( ← or →) indicate the direction
of the computation of the TM as distinct from logical derivation indicated by
⇒. Thus LIGR’s are also reverse computation rules, but very special ones
because they arise in the context of IGR’s.

There are obvious advantages of treating IGR’s in this way as can be seen
in the drastically shortened list of results (12 LIGR’s from Table 1 not counting
parts and sub-parts separately). Moreover if an LIGR (on its LHS) matches
the origin of an IRR, F applied to this IRR has as origins the result of the
substitution for T1 in the RHS of the LIGR, and its RHS can be computed
directly from the original RHS using alpha of the LIGR. Thus the RHS’s can
be filled in later and do not need to be recorded in the rule for generating new
IRR’s from existing ones.
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5.2 Sequences of LIGR’s and F

A sequence of LIGR’s is a chain of LIGR’s that can follow each other written
with · between them so for example if

L1 = 1caT
b← 2aca

2acb

}
T. (31)

L2 = 2T

{
b← 1aT
c← 2bT

(32)

L3 = 1T
b← 1cT (33)

then
L1.2 = 1caT

b← 2acbT

L2.1 = 2T
b← 1aT

(34)

and the chain L1.2 · L2.1 · L3 is the the result of the three substitutions of the
LHS performed in that sequence giving

1caT← 2acbT← 1aacbT← 1caacbT (35)

so the combination is 1caT
bbb← 1caacbT.

Similarly to the way in which F was applied to sequences of IGR’s combined
together, this can obviously be done for sequences of LIGR’s. The result of F
applied to a sequence of LIGR’s of length 1 cannot give rise to any residual
CS’s because there is not enough “room” and can be affected by adding an
extra LIGR to the beginning of the sequence. To show this suppose an LIGR
or a sequence of LIGR’s combined as above X1 with α on the left has a sub-part
of the form

s1y1 . . . yrT
α← s2z1 . . . zr+1T. (36)

Likewise let X2 be

s′1y
′
1 . . . y

′
r′T

α′
← s′2z

′
1 . . . z

′
r′+1T. (37)

Then for the sequence X2 · X1 to be possible requires, s′2 = s1 and y1 . . . yr is a
substring of z′1 . . . z

′
r′+1 on the left, and α is on the left for X2 too. The result

of X2 · X1 is

s′1y
′
1 . . . y

′
r′T

α′
← s′2z

′
1 . . . z

′
r′+1T = s1y1 . . . yrz

′
r+1 . . . z

′
r′+1T

α← s2z1 . . . zr+1z
′
r+1 . . . z

′
r′+1T.

(38)
Comparing (36) with (38) shows the effect on X1 of preceding it with X2 which is
to add extra symbols next to T in its right hand member. Therefore the results
of the backward search starting from the RHS of (36) are reproduced when
started from the RHS of (38) and shortened to the shortest form provided the
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pointer ends up at α; these give rise to LIGR’s. In addition there may be some
extra LIGR’s resulting from the pointer reaching the extra symbols which may
be classified by the position of the rightmost symbol reached. Crucially, this
happens only when F applied to X1 leads to cases in the backward search when
the pointer ends up at the opposite end of the string from α i.e. condition 2
is reached because the above searches can then be truncated when they reach
the opposite end from α. These were termed residual CS’s because they are
cases that do not lead directly to any more IGR’s and LIGR’s but indicate the
possibility of them if the sequence of LIGR’s to which F is applied increases in
length as a result of a preceding LIGR appended to the sequence in question.

Finally, there may be results of this where the pointer ends up at the
opposite end of the string from α i.e. the pointer goes right when the rightmost
symbol is reached. These are the new residual CS’s in the result of F applied to
(38) and will be designated as F2(X2 ·X1). Therefore it makes sense to introduce
∆F1 as the set of extra LIGR’s from F, as a result of adding an extra LIGR
Y1 at the beginning of the sequence where S = X1 · X2 . . . · Xn is a sequence of
LIGR’s:

∆F1(Y1, S) = F1(Y1 · S) \ F1(S). (39)

In this notation the result of the preceding paragraph can be written as

F2(S) = ∅ ⇒ ∆F1(Y1, S) = ∅. (40)

The converse is not true because it could be that there are some reverse search
paths that go beyond the symbols in S but none of them go back to α. In
this case F2(Y1 · S) ̸= ∅ or some of these reverse search paths just reach an end
because at some point no reverse TM step is possible. Here the result of F
applied to a sequence of LIGR’s was split into two components F = (F1, F2).
Also the result of F for a collection of LIGR’s in a sequence is defined as the
result of F for the combined LIGR, which actually only depends on the its RHS
and results from applying the backward search algorithm to it. A consequence
of this is that the arguments of F can be written in different ways e.g. the
sequence of LIGR’s can be replaced by the equivalent sequence of symbols in
the RHS of the combined LIGR.

5.3 Evaluating (39) one extra symbol at a time

The following is a description of the above calculation taken one symbol at
a time. It can be applied when several symbols are added in one step from
a single LIGR as was the original intention, or when a sequence of LIGR’s is
added that each contribute just one symbol etc..

The result of (39) can obviously be obtained by adding each symbol sep-
arately, so in the general case above the extra symbols can also be called
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z′r+1 . . . z
′
r′+1 and one can write:

F1(Y1 · S) = F1(s2z1 . . . zr+1z
′
r+1 . . . z

′
r′+1)

=
[⋃i=r′+1

i=r+1 ∆F1(z
′
i, s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1)

]
∪ F1(s2z1 . . . zr+1)

(41)

where the first term of the union is (39) and the second term is F1(S). Each step
uses the residual CS’s from the previous step. These residual CS’s with the
single extra symbol are the starting points of the continuing backward search
which would of course stop if at some point there were no more residual CS’s.
In more detail, in order to calculate

∆F1(z
′
i, s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1) (42)

which is by definition

F1(s2z1 . . . zr+1z
′
r+1 . . . z

′
i) \ F1(s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1), (43)

in the backward search the pointer must reach z′i before ending up at the right
or left end (otherwise duplicate results are obtained that are to be eliminated),
therefore the backward search can start from

F2(s2z1 . . . zr+1z
′
r+1 . . . z

′
i−1)z

′
i (44)

where the last symbol is concatenated to the residual results of F2. If the
pointer reaches α the result is a new LIGR otherwise it gives a residual CS
which is in

F2(s2z1 . . . zr+1z
′
r+1 . . . z

′
i). (45)

Putting i = r +1 initially, then this shows that the backward search starts
from F2(s2z1 . . . zr+1)z

′
r+1 i.e. the set of residual CS’s from the initial backward

search for S each appended with the first extra symbol z′r+1 on the right. If
the pointer reaches α as the backward search continues, this gives a new LIGR
otherwise it gives a residual CS in F2(s2z1 . . . zr+1z

′
r+1) if the pointer reaches

the opposite end of the string of symbols, or comes to a point where the
backward search can go no further or end in an infinite stationary loop. Then
for i = r +2, the backward search starts from this appended with z′r+2 on the
right. Again the backward search continues either the pointer reaches α giving
a new LIGR, or away from it giving a residual CS in F2(s2z1 . . . zr+1z

′
r+1z

′
r+2)

etc.. This continues until all the new symbols have been added and all possible
backward search paths are followed at each stage. If at any stage there are
no residual CS’s in F2 it terminates. All the new LIGR’s are accumulated and
any final residual CS’s are noted. Naturally, there is an equivalent version of
this if α is on the right.
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5.4 The procedure for finding the LIGR’s for a TM

This algorithm is extremely complicated and is very hard to describe so the
reader is not expected to understand this immediately. For this reason I at-
tempt to do so here in this section and then the algorithm is applied to TM
(23) in detail in Section 5.5 when it should become clearer.

Algorithm 5.1. The algorithm F applied repeatedly can generate all the
IRR’s starting with members of IRR(2) therefore the first step is to find L the
set of LIGR’s corresponding to the formation of the members of IRR(3) from
those of IRR(2) by applying F. Doing this starts with putting the arbitrary
symbol α at one end of the pair of symbols in the origin of the member of
IRR(2) and the backward search starts with the pointer at the middle symbol.
A single reverse TM step gives a member of IRR(3) if the pointer moves to α
and if it goes the other way condition 2 occurs giving a residual CS, so only
one symbol is involved therefore the reduced form (the LIGR) that results (if
the pointer goes to α) must have length 1. The RHS of each of these LIGR’s
of length 1 already is a residual CS because the pointer is already adjacent to
T.

Next the LIGR’s involved in forming the IRR(n+1) from the IRR(n) need
to be found for all n ≥ 3. This can be done by searching for all LIGR’s that
can follow sequences of LIGR’s that have already been found. This involves
applying F to an arbitrary sequence S of such of LIGR’s substitiuted into each
other as in Section 5.2. This has to be done until closure i.e. until no more
LIGR’s can be found if this is repeated one more time. For this, as shown in
Section 5.2, ∆F1 and F2 need to be found only if the previous F2 ̸= ∅ i.e. only if
F applied to S gives F2(S) ̸= ∅, carry out F to obtain ∆F1(X · S) and F2(X · S) for
each LIGR X that can precede S where the requirement for precedence is given
in (38). This calculation can start from the previous F2 with the substitution
made for T indicated by X. This condition will be met for each of the initial
set of LIGR’s in L because as shown above their RHS’s each have the form
of a residual CS. Any new LIGR’s from ∆F1(X · S) are added to L. For any
members of F2(X · S) apply this algorithm recursively i.e. with X · S taking the
place of S above etc.. It is expected that this algorithm will terminate because
the matching criterion for new LIGR’s that can be prepended to the sequence
gets increasingly stringent as the length of the strings increases. If this happens
repeat this algorithm the “grand search” with the new enlarged set L of LIGR’s.
This should in fact be just to add to the previous results instead of repeating
them because the previous LIGR’s are still in L. Repeat this “grand search”
until the set of extra LIGR’s added to L in one cycle is empty.

Definition 5.2. A finite set of LIGR’s Z is closed under F if for any se-
quence of members of Z that can be substituted into one another in sequence
as in (35), the backward search F applied to the result of this generates results
that are each a member of the set Z.
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Theorem 5.3. If there is a finite set Z of LIGR’s for a Turing Machine that
is closed under F as described above and includes all the LIGR’s involved in
obtaining the set IRR(3) from the set IRR(2) then every IRR for that TM can
be obtained from a member of IRR(2) by a sequence of applications of LIGR’s
each in Z as described in Section 5.2.

It is also obvious that no LIGR’s could be removed from this set Z and Z

still have this property because members of Z are only put there when they
are required.

Proof. Consider deriving the members of IRR(4) from IRR(3). This can be
done by applying F to each member of IRR(3) and accumulating all the results.
Applying F gives results that come from members of Z because any LIGR
following an LIGR in Z is also in Z by the closure property. Likewise deriving
members of IRR(5) involve applying F to members of IRR(4) that themselves
have been derived using a pair of LIGR’s. Again all such derivations of LIGR’s
that can follow this sequence are in Z by the closure property etc..

This all assumes that Z is finite. The case if the closure algorithm does not
terminate leading to an infinite set Z closed under F might be interesting.

The remainder of this section contains the application of Algorithm 5.1 to
the example (23). The results are not all presented in the order in which they
were derived i.e. there are forward references to LIGR’s that have not yet been
derived. This is because L is increasing in size as the algorithm proceeds and
to avoid duplication, the results are presented assuming the current L is the
final one and in the order determined by the grand search i.e.“depth first” (if
not the results will be added to). This all assumes that the final L is finite. It
will soon be clear that it is useful throughout this section to use the symbol d
to mean eaither a or b.

That there is a finite number of LIGR’s has been strongly suggested in the
present case by the computer results that established Table 1 using any value
of the maximum length of the strings involved (n) between 10 and 16 and show
the same result. The computations rapidly increase in number and time taken
as n increases.

Checking the arguments requires the derivation route from the initial LIGR’s
in L to all the final ones which will be given so that the results can all be
checked.

The following are the 7 LIGR’s that arise from the derivation of the IRR(3)
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from the IRR(2):

1 2T
b← 1aT

2 3T
b← 1Tb

3 1T
b← 1cT

4 2T
c← 2bT

5 1T
c← 2Tc

6 1T
a← 3Ta

7 1T
a← 3Tb

. (46)

The relation “can possibly be preceded by” on the LIGR’s is also being
discovered continually as the LIGR’s are being discovered. The criterion is
that the RHS of the preceding LIGR must match the LHS of the original
LIGR in state, string of symbols and direction. The relation “can possibly be
preceded by” initially among the 7 LIGR’s is given by

1 4

2 6, 7
3 1, 3
4 4

5 2

6 2

7 2

. (47)

While carrying out the main argument the following results emerged and
are collected here for convenience because they may need to be referred to
anywhere throughout the main argument. As explained above, it is not now
obvious why these propositions are needed, but this becomes clear later on.

Lemma 5.4. The reversed TM cannot cross the symbol a going left, and

Lemma 5.5. The reversed TM cannot cross the pairs of symbols cx going
right where x is any symbol

Proof. There is no reverse TM step of the form xa ← CS therefore the pointer
cannot get left of the a which is maintained. Also if the pointer were to reach
just left of the symbol c a further reverse step to the right is only possible if it
is to the CS 2c (using 2c → 1 c in reverse). The next reverse TM step must
be to the left if at all because there are no TM steps of the form CS → 2 x

where x is any symbol. Thus the symbols cx are maintained and the pointer
has not crossed them.

Lemma 5.6. The backward search from any CS of the form 1Ta

{
a

b

}
baaaα

cannot lead to any new LIGR’s or residual CS’s provided the string T contains
the symbol a.
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Proof. This is by continuing the backward search from there. This gives the
following tree

1Tadbaaaα←

1Tadca3α←

3Tadcda2α← 3Tadcda2α←
{
2Taacda2α
1Tadcba2α∗

1Tacca3α
3Tadbadaα

(48)
1Tadcba2α← 3Tadcbdaα← 2Tadcadaα← 2Tadbadaα← 1Taabadaα (49)

where the computation stopped whenever either no reverse TM step is possible,
or when by Lemmas (5.4) or (5.5) the pointer cannot go beyond the string as
a result of continued backward searching. Because all branches of the tree do
eventually lead to a halt, no LIGR’s or residual CS’s can result from further
backward searching.

Lemma 5.7. Backward searching starting from any CS of the form 1Tdcabadaα
leads to exactly the following set of CS’s regardless of the arbitary string T in
addition to possible CS’s with the pointer at the left depending on T:

1Tdca2dbdb

3Tdca3dbd

2Tdca3dbc

1Tdcdbdbdb

3Tdcdcbdbd

2Tdcdcbdbc

3Tdcdbadbd

2Tdcdbadbc

(50)

These are related to the set of LIGR’s in 90.20-23.
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Proof. The backward search stops if either (1) the pointer can be shown not
to get to the right because of cx on the right of the pointer or (2) no further
backward TM steps are possible or (3) the end of the known symbols on the
string is reached or (4) a stationary cycle is reached. The numbers after *
indicate continuations.

1Tdcabadaα←


1Tccabadaα

3Tdcdbadaα←


3Tdcdbadaα←

{
2Tacdbadaα
1Tdcbbadaα

1Tdcdbadaα←
{
1Tdccbadaα
3Tdcdbddaα ∗ 1

∗ 1←
{
2Tdcdaddaα← 1Tdcaaddaα← 3Tdcadddaα← 1Tdcadbdaα ∗ 2
1Tdcdbdbaα ∗ 5

∗ 2←
{
1Tdcacbdaα
3Tdcadbdaα← 2Tdcadadaα← 1Tdcaaadaα← 3Tdcaaddaα ∗ 3

∗ 3← 1Tdcaadbaα←


1Tdcaacbaα

3Tdcaadbdα←
{
2dca2dadα← 1Tdcaaaadα ∗ 4
1Tdca2dbdb

∗ 4← 3Tdca3ddα← 1Tdca3dbα←

1Tdca3cbα
3Tdca3dbd

2Tdca3dbc

∗ 5←


1Tdcdbcbaα← 1Tdcdccbaα

3Tdcdbdbdα←

2Tdcdbdadα← 1Tdcdbaadα←
{
1Tdcdcaadα ∗ 6
3Tdcdbaddα ∗ 8

1Tdcdbdbdb

∗ 6←


1Tdcccaadα

3Tdcdcdadα← 3Tdcdcdadα←
{
2Tdcacdadα
1Tdcdcbadα← 3Tdcdcbddα ∗ 7

∗ 7←


2Tdcdcaddα← 2Tdcdbaddα← 1Tdcabaddα

1Tdcdcbdbα←

1Tdcdcbcbα← 1Tdcdcccbα
3Tdcdcbdbd

2Tdcdcbdbc

∗ 8← 1Tdcdbadbα←

1Tdcdbacbα
3Tdcdbadbd

2Tdcdbadbc

(51)
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Lemma 5.8. If in a row of the table in section 5.5.9, some LIGR’s are
produced then in another row with the RHS of “its affect” differing only by
the symbol next to the string T, the same set of LIGR’s is produced. For the
same pair of rows of the table, the set of RCS’s in each case is obtained only
by single reverse TM steps if possible.

Proof. Suppose a backward search gives

STβT1α← LIGR’s and/or RCS’s (52)

in the table in section 5.5.9 where the pointer is at the right had end of T1,
then this will be based on

STT1α← S1TT2α (53)

(an RCS) also in the same table where the pointer is at the left hand end of T2,
and β along with α is an arbitrary symbol and T1 and T2 (as is T) are arbitrary
strings of symbols and S and S1 are arbitrary states. This is because one line
of the table is always obtained from a preceding line by adding a symbol to
T1. This will be done several times if necessary to get the required line of the
grand search. Therefore (52) can be written as

STβT1α← S1TβT2α← LIGR’s and/or RCS’s. (54)

If the pointer here does not reach β, it follows from this that

STγT1α← S1TγT2α←
{
S2TδT2α
LIGR’s and/or RCS’s

(55)

where the first member of the set on the right is there if and only if S2δ → S1γ ,
and γ and δ are also arbitrary symbols. If (54) does not lead to any RCS’s
then the derivation cannot have the pointer reaching β then the derivation is
followed as in the proof of (54) except that β is replaced by γ and the pointer
never reaches γ leading to the same LIGR’s after the unused symbol γ has
been removed. If β is reached in (54) then follow the reverse steps that lead to
the pointer reaching β giving some RCS’s that could be different from those
in (54).

As long as β is not reached by the pointer, the symbols to the right of β are
independent of β. Therefore if the backward search from (52) is completed, the
corresponding results with a different value of β are obtained by (1) assessing
whether or not the single step to β is possible from the start or from any point
where the pointer reaches one space to the right of β and if so including the
RCS obtained, and (2) taking the results that don’t take the pointer to β and
replacing β by the new symbol. This leaves the LIGR’s unchanged after the
symbol in place of β that plays no part in the calculations is removed.
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Lemma 5.9. Any RCS of the form 2Tbbn+1addα does not lead to any
LIGR’s for n ≥ 0.

Proof. For convenience let the string bn+1addα be deonoted by S because it
remains the same throughout the proof and note that the leftmost symbol of S
is b if n ≥ 0. Add an arbitrary symbol β on the left according to the procedure
described in section 5.3 and continue the backward search from there gives

2TβbS←
{
1TabS

2TbbS
. The second case is as above with n increased by 1. Repeat

this for the first case giving 1TβabS ← 1TcabS. Repeat this argument again
gives

1TβcabS←


1TccabS ∗

3TβcdbS←

3TβcdbS←

1TβcbbS
2TacdbS ∗
3TccdbS ∗

1TβcdbS← 1TβccbS

(56)

In this search tree, ∗ indicates that by Lemma 5.5 the pointer can never reach α
i.e. no new LIGR’s can result from further additions of symbols. Because this
search tree is complete it follows that the backward search from 2Tbbn+1addα
cannot lead to an LIGR unless the backward search from 2Tbbn+2addα also
leads to an LIGR. This gives an infinite regress showing that no RCS of this
form can lead to an LIGR for n ≥ 0.

5.5 The main argument

Due to the problem with presenting this and the forward references mentioned
above, in the following the numbers of LIGR’s refer to the LIGR’s listed in
(90) which is the most up to date list of LIGR’s obtained by Algorithm 5.1
applied to TM (23).

Rather than repeating the phrase “Applying F to the sequence of LIGR’s X

gives . . .” on many occasions it will be shortened to X
F⇒ . . .. Another notation

that could be useful is for “there are no residual CS’s in this result” because it
implies that that branch of the grand search ends because no preceding LIGR’s
can generate any new LIGR’s from it by F. It can be written as just ⊣.

5.5.1 Sequences ending with LIGR 1

Applying F to 1 gives just 1αaT
b← 1caT i.e. LIGR 3 i.e. 1

F⇒ 3. Clearly
applying F to an LIGR of length 1 as is done here could possibly lead to more
results if T is specialised by giving a symbol at one end of the string (here
the left end) therefore preceding LIGR’s must be considered. LIGR 1 can be

preceded by LIGR 4 giving 4 · 1 having the combined effect 3T
b← 2aT

b← 1aaT
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i.e. 3T
bb← 1aaT and 4 · 1 F⇒ 3 because F gives the calculation

1αaaT


b← 1caaT

←
{
3αaaT
3αabT

i.e. 1αaaT

{
b← 1caaT

← 3αadT
(57)

The first part of this is LIGR 3, and the second part is a pair of residual CS’s.
By specialising this by giving the first symbol(s) of T, the first result will not
generate any new LIGR’s after reducing the result to its shortest form, the
result will merely be replicated, but for the second part it is possible that the
reverse computation could take the pointer back to α and so generate more
new LIGR’s so the search has to continue back, so we have thus far

. . . 1
F⇒ {3}

. . . · 4 · 1 F⇒ {3}
. (58)

The second member of this is related to its first member because any results of F
from the first part must be included in the results of the second part as happens
here but the residual CS’s are not the primary result of F and are not included
in (58).2. There are residual CS’s so any LIGR’s that can precede 4 ·1 must be
considered and F must be applied to all these. The LIGR’s that can precede 4
are just 9,12 and 13 and 25. The sequence 9 · 4 · 1 gives 3T

c← 3cT← 1aacT.
Applying F to this starts from (from (57) with the substitiution given by LIGR
9) 1αaacT← 3αadcT in addition to 3 as above and ∆F1 is just the result of this
backward search from 3αadcT and because the computation cannot go back
from there ∆F1(9, 4·1) = ∅ and F2(9·4·1) = ∅. Therefore there are no results of
F and it is now it is clear that no preceding LIGR’s specialising this T can give
any results of F, so the search for new results of F stops in this branch of the
grand search tree. The sequences {12, 13}·4·1 have the effect 1caT← 1aaccdT

and applying F gives 1αaaccdT← 3αadccdT from which there are no further
backward steps so there are no new LIGR’s or residual CS’s and these branches
of the grand search end i.e. ∆F1({12, 13}, 4 · 1) = F2({12, 13} · 4 · 1) = ∅.
25 · 4 · 1 has the effect 1cabcT← 1aac3dcT and F applied to this by (57) gives

1αaac3dcT ←
{
3αaac3dcT
3αabc3dcT

which by Lemma 5.5 cannot lead to an LIGR.

This completes the analysis for all sequences that can precede 4 · 1 therefore
the next sequence of LIGR’s to be considered is 5 · 1 i.e. 2T ← 2bT ← 1abT.
The computation of F starts from 1αabT and gives no result other than LIGR
3, so ∆F1(5, 1) = F2(5 · 1) = ∅. Next 10 · 1 must be considered which is
1caT← 2acaT← 1aacaT.

10 · 1 F⇒ 1αaacaT←
{
1caacaT

3αadcaT
. (59)

which is also a special case of (57). The first of these is just LIGR 3 and the
second cannot continue, so there are no new LIGR’s from preceding 1 by 10
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i.e. ∆F1(10, 1) = F2(10 ·1) = ∅. Next consider 11 ·1 which is 1caT← 2acbT←
1aacbT and applying F gives a result practically the same as above with the
same conclusion. It is not too difficult to show that the same results hold for
all the other LIGR’s that could precede LIGR 1 and all the results starting
with F applied to 5 · 1 in this paragraph can be summarised as

∆F1({5, 10, 11, 16, 17, 19, 24}, 1) = F2({5, 10, 11, 16, 17, 19, 24} · 1) = ∅. (60)

This exhausts all search trees in the grand search starting from LIGR 1.

5.5.2 Sequences ending with LIGR 2

Next consider applying F to sequences ending with 2 which is 3T
b← 1Tb. F

applied to this gives

1Tbα

{ a← 3Tbd
c← 2Tbc

(61)

which are LIGR’s 6,7, and 8 so

2
F⇒ {6, 7, 8}. (62)

The last symbol of T in (61) could affect this result so LIGR’s preceding 2 must
be considered which are 7 and 8, 21 and 23.0 − 15,26,28,30. The sequence
7 · 2 is 1T

a← 3Ta ← 1Tab and applying F gives the same set i.e. LIGR’s
6, 7, 8 and no residual CS’s i.e. ∆F1(7, 2) = F2(7 · 2) = ∅. This is because the
pointer cannot move left in the reverse computation regardless of any other
specialisations of T resulting from preceding LIGR’s. Consider 8 · 2 which is
1T

a← 3Tb ← 1Tbb. F gives 1Tbbα ← 1Tcbα in addition to 6,7, and 8 and so
can be potentially specialised further i.e. ∆F1(8, 2) = ∅ and F2(8 · 2) = 1Tcbα.
LIGR 8 can only be preceded by 2 and 20 so the next sequence to be considered

in the grand search is 2 · 8 · 2 which is 3T
b← 1Tb ← 1Tbbb. F applied to this

gives
1Tbbbα← 1Tbcbα← 1Tccbα (63)

i.e. ∆F1(2, 8·2) = ∅ and F2(2·8·2) = 1Tccbα. This residual CS by Lemma (5.5)
cannot lead to any new LIGR’s because the pointer can never reach α by the
reverse TM computation however many preceding LIGR’s are added to the
sequence. Therefore there is no point in continuing grand search along this
branch. This is a short cut that was not anticipated in the general algorithm

5.1. Next consider 20 · 8 · 2 having the effect 3Tb5a ← 1Tc

{
db

aa

}
dbdbbb.

Applying F to this gives a result of the same form as in (63) therefore the
same conclusion follows and the grand search continues from 21 · 2 which has
the effect 3Tb5a ← 1Tca3dbdb. Applying F to this gives some results of the
form (63) not leading to any new results as above or with the symbol a in the
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rightmost but one position. This is of the form 1Tbab having no preceding TM
step to the left in F hence F applied to this gives ∆F1 = F2 = ∅.

The sequence 23·2 has the effect 3Tb5a← 3Tcd

{
ba

cb

}
dbd← 1Tcd

{
ba

cb

}
dbdb.

Applying F to this gives

1Tcd

{
ba

cb

}
dbdbα

b← 1Tcd

{
ba

cb

}
dbcbα ← 1Tcd

{
ba

cb

}
dccbα. There is no

point going any further with the algorithm F because from this CS, by Lemma (5.5)
it is not possible for the pointer to get to α regardless of any preceding LIGR’s
i.e. no new LIGR’s can result from this, another unanticipated short cut to Al-
gorithm 5.1. Similar results all hold for {26, 28, 30} · 2 which lead to applying
the backward search from a CS of the form 1Tdbdbα.
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5.5.3 Sequences ending with LIGR 3

Consider sequences of LIGR’s ending with 3 which is 1T
b← 1cT. Applying F

starts from 1αcT
b← 1ccT showing that 3

F⇒ {3}. 3 can be preceded by 1, 3,
14, 15 and 18. The sequence 1 · 3 is 2T ← 1aT ← 1caT. Applying F starts

from 1αcaT

{
b← 1ccaT

← 3αcdT
showing that two new residual CS’s are the only extra

results of preceding 3 with 1. The sequence 4 · 1 · 3 is 3T ← 2aT ← 1caaT.
Applying F gives

1αcaaT← 3αcdaT← . . .


← 3αcbdT
b← 2acdaT
c← 3ccdaT

. (64)

where the pointer does not reach the a adjacent to T during this computation
of the last two parts therefore this shortens to

1caT

{
b← 2acdT
c← 3ccdT

(65)

which are new LIGR’s and will be numbered 10− 13 (two for each because d

has two values) respectively (e.g. LIGR 11 is 1caT
b← 2acbT), and the residual

CS’s which require further backward searching. The sequence 9 · 4 · 1 · 3 is
3T← 3cT← 1caacT. Applying F gives

1αcaacT← 3αcbdcT

{
b← 1abadcT
c← 2bbadcT

(66)

after a few steps. These when abbreviated are

1caaT

{
b← 1abadT
c← 2bbadT

(67)

which will be numbered LIGR’s 14 − 17 respectively. Also there are now no
residual CS’s, so this branch of the grand search ends.

The sequence 12 ·4 ·1 ·3 has the effect 1caT← 1caaccaT and F gives, using
(64),

1αcaaccaT← 3αcbdccaT

{
b← 1abadccaT
c← 2bbadccaT

(68)

produces only 14−17 again and no new residual CS’s. The sequence 13 ·4 ·1 ·3
clearly gives the same result because it is the same as above except that the
rightmost a has been replaced by b throughout which makes no difference and
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the analysis for 25 ·4 ·1 ·3 is similar with the same result. Next consider 5 ·1 ·3
with the effect 2T← 1cabT. Then applying F gives

1αcabT← 3αcdbT←

3αcdbT

{
b← 2acdbT
c← 3ccdbT

1αcdbT

(69)

apart from CS’s for which there is no preceding CS. This gives two double
LIGR’s which reduce to 10− 13 and a residual CS. 4 · 5 · 1 · 3 is 3T← 1cabaT

and F gives
1αcabaT← 1αcdbaT← 3αcdbdT (70)

from (69). This RCS requires going back in the grand search. The next
sequence 9 · 4 · 5 · 1 · 3 is 3T← 1cabacT. F gives

1αcabacT← 3αcdbdcT
5← 2αcadbcT. (71)

By Lemma 5.4 because of the a on the left of the pointer, no new LIGR’s can
result if this branch of the grand search is continued. For 12/13·4·5·1·3 which
has the effect 1caT ← 1cabaccdT, F can start (by (71)) from 2αcadbccdT
and again by Lemma 5.4 no LIGR’s can result from this branch. The same
holds for 25 · 4 · 5 · 1 · 3. Consider 5 · 5 · 1 · 3, F can start from 1αcabbT ←
1αcdbbT ← 1αccbbT from which there are no RCS’s or LIGR’s. Applying
F to 10 · 5 · 1 · 3 can start from 1αcabacaT ← 1αcdbacaT ← 1αcaadcaT
and again by Lemma 5.5 no LIGR’s can result from this branch. 11 · 5 ·
1 · 3 is 1caT ← 2acbT ← 1cabacbT F gives 1αcabacbT ← 1αcdbacbT ←
3αcaddcbT cannot continue. 16 · 5 · 1 · 3 is 1caaT ← 2bbaaT ← 1cab3caaT F

gives 1αcabcaaT← 1αcdbcaaT←

2accdcaaT

3cccdcaaT

2αccacaaT
where the last result cannot

give any LIGR’s. These shorten to the new LIGR’s 24 and 25 respectively

1cabcT ←
{
2accdcT

3cccdcT
. 17 · 5 · 1 · 3 is 1caaT ← 2bbabT ← 1cabbbabT. F gives

1αcabbbabT ← 1αcdbbbabT ← 1αccb3cT which cannot continue giving no
RCS’s and no LIGR’s. 19 · 5 · 1 · 3 is 1ccT ← 2bbcT ← 1cab3cT. F gives
1αcab3cT ← 1αcdbbbcT ← 1αccb3cT no new results. 10 · 1 · 3 is 1caT ←

2acaT ← 1caacaT F gives 1αcaacaT ← 3αcdacaT ←


2acdacaT

3ccdacaT

1abadcaT

2bbadcaT

. These

shorten to the LIGR’s 10 − 17 already found and no RCS’s. Similarly the
results of 11 · 1 · 3 give the same final results. 16 · 1 · 3 is 1caaT← 2bbaaT←

1cabbaaT F gives 1αcabbaaT← 3αcdbbaaT←
{
2acdbbaaT

3ccdbbaaT
which shorten to

LIGR’s 10 − 14 with no RCS’s. 17 · 1 · 3 is 1caaT ← 2bbabT ← 1cabbabT
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F gives results that shorten to LIGR’s 10 − 13 with no RCS’s. 19 · 1 · 3 is
1ccT ← 2bbcT ← 1cabbcT. F gives results that shorten to LIGR’s 10 − 13

again.

The sequence 3·3 has the effect 1T
b← 1cT← 1ccT. F gives 1αccT← 2αccT

a residual CS so continue. 1 · 3 · 3 has the effect 2T
b← 1aT← 1ccaT

1αccaT← 2αccaT← 2αbcaT

{
b← 1abcaT
c← 2bbcaT

(72)

This shortens to

1ccT

{
← 1abcT

← 2bbcT
(73)

without any residual CS’s. Equation (73) will be called LIGR’s 18 and 19

respectively. Consider the sequence 3 · 3 · 3 with effect 1T
b← 1cT← 1cccT

1αcccT← 2αcccT← 2αbccT

{
b← 1abccT
c← 2bbccT

(74)

which shortens to 18 and 19 above, without any residual CS’s. Next consider
14/15 · 3 which is 1caaT← 1abadT← 1cabadT. Applying F gives

1αcabadT←


b← 2acdbadT
c← 3ccdbadT

← 1αcdbdbT

(75)

The minimal forms of the first two results are the LIGR’s 10−13. The sequence
18 · 3 is 1ccT← 1abcT← 1cabcT. F gives

1αcabcT←

2acdbcT

3ccdbcT

2αcdbcT
(76)

which when shortened give LIGR’s 10 − 13 and a residual CS. Only 3 can
precede 18 and 3 · 18 · 3 is 1cT ← 1ccT ← 1cabcT. Note that here an extra
symbol c was needed in order that the RHS of 3 matched the LHS of 18 · 3.
F gives the same result as above. Of the LIGR’s that can precede 3 only 3 is
compatible because of the symbol c on left and this gives 3 · 3 · 18 · 3 which is
1T← 1cT← 1cabcT which again gives the same result of F. 1 · 3 · 3 · 18 · 3 is
2T← 1aT← 1cabcaT. F gives no RCS’s and LIGR’s 24 and 25. 3 ·3 ·3 ·18 ·3 is
1T ← 1cT ← 1cabccT. F gives LIGR’s 24 and 25 and no RCS’s, and likewise
for 14/15 · 3 · 3 · 18 · 3. It is now obvious that the same result will come from
18 · 3 · 3 · 18 · 3 because it starts from a CS that shares in common with the
previous case the string beyond which the computation to get these results
does not go. The sequences 14/15 · 3 · 18 · 3 are 18 · 3 · 18 · 3 are not possible
because of other compatibility restrictions based non-adjacent LIGR’s.
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5.5.4 Sequences ending with LIGR 4

LIGR 4 is 3T
b← 2aT. F gives

2αaT

{
b← 1aaT
c← 2baT

(77)

which shortens to 1 and 5, and this result could depend on the leftmost sym-
bol of T because right-moving reverse steps could occur. Therefore LIGR’s
preceding 4 must be considered. 9 · 4 is 3T ← 3cT ← 2acT, and applying F

gives no LIGR’s or RCS’s. 12/13 · 4 is 1caT ← 3ccdT ← 2accdT and F gives

no LIGR’s or RCS’s. Therefore these results show that {9, 12, 13} ·4 F⇒ {1, 5}
only.

5.5.5 Sequences ending with LIGR 5

LIGR 5 is 2T ← 2bT and applying F gives 2αbT

{
b← 1abT
c← 2bbT

which shortens to

1 and 5 so 5
F⇒ {1, 5}. The sequence 4 · 5 is 3T ← 2aT ← 2baT. Applying

F starts from 2αbaT and gives no new LIGR’s and no residual CS’s. This is
likewise true for 5,10,11,16 and 17 preceding 5 and all follow from the fact
that 2 a and 2 b cannot be arrived at from a step of the TM, so all sequences

ending with {4, 5, 10, 11, 16, 17} · 5 F⇒ {1, 5}.

5.5.6 Sequences ending with LIGR 6

LIGR 6 is 1T ← 2Tc. Applying F gives 2Tcα ← ∅. A left-moving reverse
step could occur depending on the rightmost symbol of T so this needs to
be specialised by considering all possible previous LIGR’s i.e 2 and 20. The
sequence 2 · 6 is 3T← 1Tb← 2Tbc and applying F gives 2Tbcα← 1Tacα. By
Lemma 5.7 this cannot lead to new LIGR’s however the string is extended by
preceding LIGR’s in the sequence.

5.5.7 Sequences ending with LIGR 7

LIGR 7 is 1T← 3Ta, and 3Taα
b← 1Tab which shortens to 3T← 1Tb i.e. 2, so

7
F⇒ {2}. Because of this, from all subsequent specialisation of this resulting

from LIGR’s preceding 7, all lead under F to LIGR 2, so this will be ignored by
restricting the first reverse TM step to moving to the left as indicated in the
general procedure. Only 2 and 20 can precede 7 and 2 · 7 is 3T← 1Tb← 3Tba

and the backward search is just 3Tbaα ← 2Taaα giving a residual CS so the
grand search continues back.
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LIGR 2 can be preceded by 7 and 8,21 and 23. The sequence 7 · 2 · 7 is
1T← 3Ta← 3Taba and 3Tabaα← 2Taaaα which cannot be continued further
back, because there are no residual CS’s and no new LIGR’s so this branch of
the grand search ends. 8 ·2 ·7 which has the effect 1T← 3Tbba. The backward
search is 3Tbbaα ← 2Tbaaα ← 1Taaaα i.e. there are no new LIGR’s and one
residual CS. Continuing back gives 2 ·8 ·2 ·7 with the effect 3T← 3Tbbba with
the backward search giving only the following result

3Tbbbaα← 1Tcaaaα. (78)

This again gives one residual CS and no new LIGR’s. Continuing, the sequence
7 · 2 · 8 · 2 · 7 has the effect 1T← 3Tabbba with backward search that gives no
residual CS and no new LIGR after 3 steps and using (78).

By now it seems that a clear pattern has emerged with LIGR’s 2 and 8

alternating, and with LIGR 7 terminating the sequences, however it is not yet
clear how an induction proof can be completed showing this generally. At-
tempts to do so initially failed with the wrong inductive hypothesis because
insufficient symbols were used. These attempts forced a consideration of fur-
ther iterations of the basic procedure as follows.

The sequence 8 · 2 · 8 · 2 · 7 has the effect 1T ← 3Tbbbba with backward
search results using (78) for the first step giving

3Tb4aα← 1Tbcaaaα←

1Tccaaaα
2Tacdaaα
1Tabadaα

. (79)

Here there are three residual CS’s and no new LIGR’s but the first two of these
can be discontinued because Lemma 5.5 implies that these RCS’s cannot lead
to new LIGR’s.

Continuing gives the sequence 2 · 8 · 2 · 8 · 2 · 7 with the effect 3T← 3Tb5a

and the backward search started using (79) gives

3Tb5aα← 1Tbabadaα← 1Tcabadaα. (80)

Continuing gives the sequence 8 · 2 · 8 · 2 · 8 · 2 · 7 with effect 1T← 3Tb6a. The
results of the backward search ∆F1 and F2 for 8 · 2 · 8 · 2 · 8 · 2 · 7 are given by

3Tb6aα← 1Tbcabadaα←



1Tbc

{
db

aa

}
dbdb

Tbca3db

{
2c

3d

}
Tbcd

{
ba

cb

}
db

{
3d

2c

} (81)

These results are clearly very important and to make them quite clear they
will be expressed as
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Lemma 5.10. Every reverse computation path represented in the second
part of (81) leads either to one of the RHS’s which when expressed with the
least number of symbols gives one of the set of LIGR’s 20−23 or ends at a point
where no further reverse computation steps are possible or (by Lemma 5.5) to a
CS where no reverse computation path can lead to the symbol α (giving a LIGR)
regardless of how many more symbols are added on the left i.e. regardless of
how many LIGR’s are prepended to the the sequence being considered. This
includes the single reverse TM step to the left. Thus no useful RCS’s are
produced.

Note that whenever there are multiple arrays with alternatives in the same
expression in (81), the alternatives can all be chosen independently of each
other. LIGR’s 20−23 seem to be much deeper results not obtainable from the
simpler technique based on (1) unless much longer sequences are considered
that will require a lot more resources (time and memory space) to find that
earlier method.

Next consider the sequence 20 · 8 · 2 · 8 · 2 · 7 with effect

3Tb5a ← 1Tc

{
db

aa

}
dbdb ← 3Tc

{
db

aa

}
dbdbb4a. Applying F using (80) gives

3Tc

{
db

aa

}
dbdb5aα ← 1Tc

{
db

aa

}
dbdcabadaα ← . . .. If the next reverse TM

step is left then by Lemma 5.10 no more LIGR’s can result from it, so this
branch can be discontinued. This can only happen if d = b. If d = a the same
result holds because of Lemma 5.10. Consider 21 · 2 · 8 · 2 · 7 giving
3Tb5a← 3Tca3dbd← 3Tca3dbdb3a. F gives 3Tca3dbdb3aα← 1Tca3dcabadaα
using (80) if the rightmost d = b. This by Lemma 5.10 gives no new re-
sults. If that d = a the backward search gives starting from 3Tca3dbab3aα←
1Tca3dbaca3α (by (78)) gives just 2Tca3dbabadaα after 6 steps and stops so
there are no new RCS’s or LIGR’s produced. Starting from 23 ·2 ·8 ·2 ·7 which

is 3Tb5a ← 3Tcd

{
ba

cb

}
dbd ← 3Tcd

{
ba

cb

}
dbdb3a the same result is clearly

produced because the last 7 symbols are the same as the case above and the
pointer does not leave this set during these computations. Consider 20 ·8 ·2 ·7

giving 3Tb5a← 3Tc

{
db

aa

}
dbdbbba and F gives the same result. 21 · 2 · 7 gives

3Tb5a ← 3Tca3dbd ← 3Tca3dbdba. All the results terminate giving no new

results. 23 · 2 · 7 is 3Tb5a ← 3Tcd

{
db

aa

}
dbd ← 3Tcd

{
db

aa

}
dbdba. Again F

gives no results. The same applies to 20 · 7 i.e. 3Tb5a ← 1Tc

{
db

aa

}
dbdb ←

3Tc

{
db

aa

}
dbdba.

3Tdbdbaα← 1Tabadaα. (82)
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Only if both d’s are b does this work so it is actually 3Tb4a← 1Tabada. From
this it follows that F applied to 21 · 3 · 7 leads to no results.

5.5.8 Sequences ending with LIGR 8

LIGR 8 is 1T← 3Tb and 3Tbα
b← 1Tbb which shortens to LIGR 2 i.e. 8

F⇒ 2.
LIGR 8 can only be preceded by LIGR 2 and 20. The sequence 2 · 8 which
has the effect 3T← 3Tbb and 3Tbbα← 2Tabα a residual CS, in addition to 2

as above, so the preceding LIGR needs to be considered i.e. 7, 8, 21, 23, 26,
28 and 30. The sequence 7 · 2 · 8 has the effect 1T← 3Ta← 3Tabb and

3Tabbα← 2Taabα (83)

from which no reverse TM step can be made so . . . 7 · 2 · 8 F→ 2 and no further
extensions to the sequence are necessary. The sequence 8 · 2 · 8 has the effect
1T ← 3Tbbb and the backward search gives 3Tbbbα ← 1Taabα a residual CS
only, so the next sequence to be considered is 2 · 8 · 2 · 8 which has the effect
3T← 3Tbbbb. The backward search gives

3Tbbbbα←

1Tcaabα
3Tbadbd

2Tbadbc
(84)

giving 1 residual CS and 6 new LIGR’s but only two using the abbreviation d,

which are 3Tbbb←
{
3Tadbd

2Tadbc
which are 26 and 27 respectively. 7 · 2 · 8 · 2 · 8

is 1T← 3Ta← 3Tab3b. F gives (∆F1)

3Tab3bα←
{
3Tacbdbd

2Tacbdbc
(85)

which can be shortened to 3Tb3bα ←
{
3Tcbdbd

2Tcbdbc
which are LIGR’s 28 and

29 respectively. 8 · 2 · 8 · 2 · 8 is 1T ← 3Tb ← 3Tb4b. F gives 3Tb4bα ←

1Tbcaabα ←

1Tabadbα
2Tcbdbc

3Tcbdbd
giving one RCS and two LIGR’s which are 28 and

29 again. (2 · 8)3 is 3T← 1Tb← 3Tb5b. F gives

3Tb5bα← 1Tbabadbα← 1Tcabadbα (86)

i.e. just one RCS. 7 · (2 · 8)3 is 1T← 3Ta← 3Tab5b. Applying F gives

3Tab5bα← 1Tacabadbα←
{
3Tacadbdbd

2Tacadbdbc
(87)
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which can be shortened by taking out the first a giving the LIGR’s 30 and 31.
At this point it will be useful to note that whatever symbol is put in place of
the first a (absorbed into T below), if the pointer reaches that position in one
step, the ca by Lemma 5.5 will prevent the pointer ever reaching α so no new
LIGR’s can result regardless of extra preceding LIGR’s considered at the start.
If the reversed TM could start by going right and then get to the position of
the first a then this would have been indicated as an RCS in (87) which did
not occur therefore

Lemma 5.11. starting the backward search from 3Tb5bα gives no additional
LIGR’s i.e. ∆F1 = ∅.

Consider 8 · (2 · 8)3 which is 1T ← 3Tb. Applying F gives a result very
similar to the one above because just the first a is replaced by b. The search
tree above has just two places where the pointer gets to the second symbol and
could bring the first b into play. In both these case the second symbol is c.
This ensures that a left reverse TM step would give a CS with cx to the right
of the pointer and from there by Lemma 5.5 no continuation of the backward
search with extra prepended LIGR’s could give a new LIGR, so these branches
should be discontinued. If the pointer goes right in these cases the results will
be the same as above but with the first a replaced by b giving the same new
LIGR’s again and no RCS’s. Again the same results are obtained if (2 · 8)3 is
preceded by 23, 26, 28 and 30. Next consider 20 · 8 · 2 · 8 · 2 · 8 which has the

effect 3Tb5a← 1Tc

{
db

aa

}
dbdb← 3Tc

{
db

aa

}
dbdbb4b. Applying F gives

3Tc

{
db

aa

}
dbdbb4bα← 1Tc

{
db

aa

}
dbdbabadbα← 1Tc

{
db

aa

}
dbdcabadbα

(88)
which by (87) similarly to how (81) was used, cannot lead to any new LIGR’s
just 30 and 31 again and no RCS’s other than those that do not lead to any
more LIGR’s. Consider the sequences {21, 23, 26, 28, 30} · 2 · 8 · 2 · 8. It is easy
to show that all these when F is applied, lead to special cases of 3dbdb3b on the
LHS and leading to special cases of 1dbdcaabα so it is only necessary to start
the backward search from here. A reverse TM step to the left (only possible if
d = b) gives a result that cannot lead to any new LIGR’s by Lemma 5.5 so can
be omitted. So starting with a right reverse step gives (longest branch is 21

steps) 1dbdcaabα ←


3dbdcbdbd

2dbdcbdbc

2dcadbdbc

3dcadbdbd

i.e. no RCS’s. Here the first two of these

results no not involve the first db and the others no not involve the first d so

the LIGR’s are 3Tdb3b←
{
3Tdcbdbd

2Tdcbdbc
and 3Tbdb3b←

{
2Tcadbdbc

3Tcadbdbd
which are

LIGR’s 32 − 35 respectively. These are duplicates! Note that these are first
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LIGR’s with d on the left. The last two are generalisations of LIGR’s 30 and
31.

Consider the sequence 20 · 8 · 2 · 8 which is 3Tb5a ← 1Tc

{
db

aa

}
dbdb ←

3Tc

{
db

aa

}
dbdbbbb. For applying F, parts of this have already been done.

Using (85) if the last d is a, F gives first LIGR’s 28 and 29 with substrings
of this obtained by truncating from the left having already been taken into
account. Otherwise if the second to last d is a (87) gives LIGR’s 30 and 31.
Also if it is b again the same LIGR’s are obtained by applying the paragraph
in the analysis of 8 · (2 · 8)3. There are no new RCS’s or LIGR’s. Consider
applying F to

{21, 23, 26, 28, 30} · 2 · 8. (89)

The effect of these all have in common the following symbols in the CS in the
rhs’s: 3dbdbb so try the reverse search starting from 3dbdbbα. If the second
d is a it stops after one reverse step as in (83). Otherwise if the first d is a it
leads to LIGR’s 26 and 27 and in addition LIGR’s 28 and 29 by (85). Some of
the effects of (89) have in common 3ab4b and 3ab4bα← 1aabadbα where the
reversed TM stops. Tb5bα by Lemma 5.11 leads to no new LIGR’s or RCS’s.
These results account for all possibilities in (89) so none of these gives rise to

new LIGR’s or RCS’s. Consider 20·8 having effect 3Tbaa← 1Tc

{
db

aa

}
dbdb←

3Tc

{
db

aa

}
dbdbb. These rhs’s are all of the form 3dbdbb so above argument

shows that no new results can emerge.

5.5.9 Sequences ending with LIGR ≥ 9

LIGR 9 is 3T← 3cT and 3αcT

{
b← 2acT
c← 3ccT

shortens to 4 and 9 so . . . 9
F→ {4, 9}

but because the left end symbol of T is not specified, specialising it by including
previous LIGR’s could generate more results. 9 · 9 is 3T ← 3cT ← 3ccT and

3αccT gives nothing new so . . . 9·9 F→ {4, 9}. Similarly it follows that 12·9 and
13·9 under F produce no new results, so . . . {9, 12, 13}·9 F→ {4, 9}. In a similar

manner also the following can be easily established . . . {10, 11} F→ {1, 5}
. . . {12, 13} F→ {4, 9}
. . . {14, 15} F→ {3}
. . . {16, 17} F→ {1, 5}
. . . {18} F→ {3}
. . . {19} F→ {1, 5}
In all these cases, F produces results that cannot that when specialised to the
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cases where T has particular forms and generate any new LIGR’s from them.
This results from the pointer not reaching next to the arbitrary string T at
any point in these derivations. These are examples of the absence of RCS’s in
the result of F not giving any new LIGR’s by specialising the original LIGR
sequence by preceding it with another LIGR.

LIGR 28 can be preceded by 8, 23, 28, 30. 8 preceding 28 makes no differ-
ence to the result because 8 · 28 has the effect 1T← 3Tb← 3T∗cbdbd only if T

ends in bbb i.e. T = T∗bbb. 23 ·28 is 3Tb5a← Tcd

{
ba

cb

}
db

{
3d

2c

}
← 3T∗cbdbd

with T∗ = Tcdc i.e. 3Tcdccbcdb and 28 · 28 is 3Tb3b← 3Tcbdbd← 3T∗cbdbd

where T∗ = Tc i.e. 3Tccbdbd. Likewise 30 · 28 is 3Tb5b← 3Tcadcbdbd. Thus
these results are all special cases of 3Tccbdbd and 3Tcadcbdbd which need F to
be applied to them. Also the middle d must actually be b otherwise no RCS’s
are obtained from 3Tdbd so stopping the calculation. To make this easier a
computer program [?] was written based on a slightly modified version of the
function “origins” appearing in [?] to obtain the results of all possible back-
ward searches with the TM starting from any given input CS. This showed
that the following CS’s gave or not RCS’s as follows:
3Tccbbbb yes
3Taccbbbb no
3Tbccb3b yes
3Tabccb3b no
3Tbbccb3b yes
3Tabbccb3b no
3Tbbbccb3b no
3Tcbbccb3b no
3Tcbccb3b no
3Tcccb3b yes
3Tac3b3b no
3Tbc3b3b yes
3Tabc3b3b no
3Tbbc3b3b yes
3Tabbc3b3b no
3Tbbbc3b3b no
3Tcbbc3b3b no
3Tcbc3b3b no
3Tc4b3b yes etc.
This sequence of results was obtained by systematically searching in a similar
manner to the main argument in section 5.5. By this point it looks as if a cycle
could have been obtained. That this is so when the RCS’s are put in which
(in view of 5.5) for 3Tcccb3b are 2Tbb4aab and 2Tbb4abb. From this it follows
that 3Tc5b3b ← 2Tcbb4aab ← 2Tbb5aab and similarly 2Tbb5abb. Similarly
3Tcadcbbbb does not yield and RCS’s regardless of whether d is a or b. In all
of these results the LIGR’s generated are the same 2,26 − 29 because these
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results have j1 = 0, 2 or 3 only and these LIGR’s must be obtained because
the starting CS is of the form 3T∗bbbb. Accepting the obvious induction argu-
ment that arises from this, all that is generated is an infinite backward search
tree giving the same LIGR’s and no RCS’s that have not been followed up,
therefore this result is complete showing that no new LIGR’s can result from
the starting CS 28 allowing for all possible preceding LIGR’s.

#
Possible sequences
of LIGR’s It’s effect

The backward search
& references ∆F1

1 2T
b← 1aT 1αaT

b← 1caT 3

4 · 1 3T
b← 2aT

b← 1aaT 1αaaT← 3αadT ∅

9 · 4 · 1 3T
c← 3cT← 1aacT 1αaacT← 3αadcT← ∅ ∅

{12, 13} · 4 · 1 1caT← 3ccdT← 1aaccdT 1αaaccdT← 3αadccdT← ∅ ∅
25 · 4 · 1 1cabcT← 3cccdcT← 1aac3dcT 1αaac3dcT← 3αadc3dcT ∅
5 · 1 2T← 2bT← 1abT 1αabT← ∅ ∅
{10, 11} · 1 1caT← 2acdT← 1aacdT 1αaacdT← 3αadcdT ∅
{16, 17} · 1 1caaT← 2bbadT← 1abbadT 1αabbadT← ∅ ∅
19 · 1 1ccT← 2bbcT← 1abbcT 1αabbcT← ∅ ∅
24 · 1 1cabcT← 2accdcT← 1aaccdcT 1αaaccdcT← 3adccdcT ∅

2 3T
b← 1Tb

a← 3Tbd
c← 2Tbc

{6, 7, 8}

7 · 2 1T
a← 3Ta← 1Tab ← ∅ ∅

8 · 2 1T
a← 3Tb← 1Tbb ← 1Tcbα ∅

2 · 8 · 2 3T
b← 1Tb← 1Tbbb ← 1Tbcbα← 1Tccbα ∅5.5

20 · 8 · 2
3Tb5a← 1Tc

{
db
aa

}
dbdb

← 1Tc

{
db
aa

}
dbdbbb

∅ ∅

21 · 2
3Tb5a← 3Tc

{
db
aa

}
dbdbb

← 1Tc

{
db
aa

}
dbdbbb

∅ ∅

23 · 2
3Tb5a← 3Tcd

{
ba
cb

}
dbd

← 1Tcd

{
ba
cb

}
dbdb

← 1Tcd

{
ba
cb

}
dbcbα

← 1Tcd

{
ba
cb

}
dccbα

∅5.5

{26, 28, 30} · 2 ← 1T∗dbdb ∅5.5

1 3 1T
b← 1cT

b← 1ccT {3}
2 1 · 3 2T← 1aT← 1caT ← 3αcdT ∅

3 4 · 1 · 3 3T← 2aT← 1caaT ← 3αcdaT


← 3αcbdT
b← 2acdaT

c← 3ccdaT

{10, 11, 12, 13}

4 9 · 4 · 1 · 3 3T← 3cT← 1caacT ← 3αcbdcT

{
b← 1abadcT
c← 2bbadcT

{14, 15, 16, 17}

5 {12, 13} · 4 · 1 · 3 1caT← 3ccdT
← 1caaccdT as above {14, 15, 16, 17}

6 25 · 4 · 1 · 3 1cabcT← 3cccdcT
← 1caac4dcT

as above {14, 15, 16, 17}
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7 5 · 1 · 3 2T← 2bT← 1cabT ← 3αcdbT


b← 2acdbT
c← 3ccdbT
← 1αcdbT

{10, 11, 12, 13}

8 4 · 5 · 1 · 3 3T← 2aT← 1cabaT ← 1αcdbaT← 3αcdbdT ∅

9 9 · 4 · 5 · 1 · 3 3T← 3cT← 1cabacT
← 3αcdbdcT←
2αcadbcT (5.4) ∅

10 {12, 13} · 4 · 5 · 1 · 3 1caT← 3ccdT← 1cabaccdT ← 2αcadbccdT (5.4) ∅

11 25 · 4 · 5 · 1 · 3 1cabcT← 3cc2dcT
← 1cabac3dcT

← 2αcadbcccdcT (5.4) ∅
12 5 · 5 · 1 · 3 2T← 2bT← 1cabbT ← 1αcdbbT← 1αccbbT ∅
13 {10, 11} · 5 · 1 · 3 1caT← 2acdT← 1cabacdT ← 2αcadbcdT (5.4) ∅

14 {16, 17} · 5 · 1 · 3 1caaT← 2bbadT← 1cab3adT ← 1αccb3adT ∅

15 19 · 5 · 1 · 3 1ccT← 2bbcT← 1cab3cT ← 1αccbbbcT ∅

16 24 · 5 · 1 · 3 1cabcT← 2accdcT
← 1cabaccdcT ← 2αcadbccdcT (5.4) ∅

17 {10, 11} · 1 · 3 1caT← 2acdT← 1caacdT L4 ∅
18 {16, 17} · 1 · 3 1caaT← 2bbadT← 1cabbadT L12 ∅

19 24 · 1 · 3 1cabcT← 2accdcT
← 1cabaccdcT L10 ∅

20 3 · 3 1T
b← 1cT← 1ccT ← 2αccT ∅

21 1 · 3 · 3 2T
b← 1aT← 1ccaT ← 2αccaT

{
b← 1abcaT
c← 2bbcaT

{18, 19}

22 3 · 3 · 3 1T
b← 1cT← 1cccT as above {18, 19}

23 {14, 15} · 3 1caaT← 1abadT← 1cabadT


b← 2acdbadT
c← 3ccdbadT
← 1αcdbdbT

{10, 11, 12, 13}

24 18 · 3 1ccT← 1abcT← 1cabcT ←
{
2acdbcT
3ccdbcT
2αcdbcT

(L7) {10, 11, 12, 13}

25 3 · 18 · 3 1cT← 1ccT← 1cabcT as above ∅
26 3 · 3 · 18 · 3 1T← 1cT← 1cabcT as above ∅

27 1 · 3 · 3 · 18 · 3 2T← 1aT← 1cabcaT ← 2αcdbcaT←
{
2accdcaT
3cccdcaT
2αccacaT

{24, 25}

28
{3, 14, 15, 18}
· 3 · 3 · 18 · 3 1T← 1cT← 1cabccT as above with aT→ cT ∅

x 4 3T
b← 2aT

{
b← 1aaT
c← 2baT

{1, 5}

x 9 · 4 3T← 3cT← 2acT note 2 β ← ∅ ∅
x {12, 13} · 4 1caT← 3ccdT← 2accdT note 2 β ← ∅ ∅

x 25 · 4 1cabcT← 3cccdcT← 2ac3dcT note 2 β ← ∅ ∅

x 5 2T← 2bT

{
b← 1abT
c← 2bbT

{1, 5}

x
{4, 5, 10, 11,
16, 17, 19, 24} · 5 3T← 2aT← 2b . . . T note 2 β ← ∅ ∅

x 6 1T← 2Tc note 2 β ← ∅ ∅
x {2, 20} · 6 3T← 1Tb← 2T . . . bc ← 1T . . . acα 5.5 ∅

x 7 1T← 3Ta
b← 1Tab 2

x 2 · 7 3T← 1Tb← 3Tba ← 2Taaα ∅
x 7 · 2 · 7 1T← 3Ta← 3Taba ← 2Taaaα ∅
x 8 · 2 · 7 1T← 3Tbba ← 1Taaaα ∅
y 2 · 8 · 2 · 7 3T← 3Tbbba ← 1Tcaaaα ∅
x 7 · 2 · 8 · 2 · 7 1T← 3Tabbba ← ∅ use row y ∅
z 8 · 2 · 8 · 2 · 7 1T← 3Tbbbba ← 1Tabadaα use row y ∅
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z2 2 · 8 · 2 · 8 · 2 · 7 3T← 3Tb5a ← 1Tcabadaα ∅

z3 8 · 2 · 8 · 2 · 8 · 2 · 7 1T← 3Tb6a ←



1Tbc

{
db
aa

}
dbdb

Tbca3db

{
2c
3d

}
Tbcd

{
ba
cb

}
db

{
3d
2c

}
{20, 21, 22, 23}

x 20 · 8 · 2 · 8 · 2 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbb4a ← 1Tc

{
db
aa

}
dbdcabadaα← . . . ∅

x 21 · 2 · 8 · 2 · 7 3Tb5a← 3Tca3dbdb3a ←
{
2Tca3dbabadaα (if d = a)
1Tca3dcabadaα (if d = b 5.7)

{20, 21, 22, 23}

x
{23, 26, 28, 30}
· 2 · 8 · 2 · 7 3Tb5a← 3Tcd . . . dbdb3a as above {20, 21, 22, 23}

x 20 · 8 · 2 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbbba as above {20, 21, 22, 23}

x ← 3Tdbdba
to get any results requires
both the d’s to be
b’s. Then refer to z

x ← 3Tadbdba 1Tacabadaα← ∅ ∅

x 21 · 2 · 7 3Tb5a← 3Tca3dbdba ∅

x ← 3Tbdbdba
Only if both d’s are b. Refer
to z2 else ∅ ∅

x 23 · 2 · 7 3Tb5a← 3Tcd

{
ba
cb

}
dbdba

Only if both rightmost
d’s are b refer to z3

Only if both
rightmost d’s
are b
{20, 21, 22, 23}
else ∅

x 26 · 2 · 7 3Tbbb← 3Tadbdba ← 1Taabadaα← ∅ ∅

x 28 · 2 · 7 3Tb3b← 3Tcbdbdba ← 1Tccabadaα← {20, 21, 22, 23}
x {28, 30} · 2 · 7 · · · ← 3T . . . bdbdba Refer to z4 ∅

x 20 · 7 3Tb5a← 3Tc

{
db
ba

}
dbdba ∅

x 8 1T← 3Tb ← 1Tbb 2

x 2 · 8 3T← 3Tbb ← 2Tabα ∅
u 7 · 2 · 8 1T← 3Ta← 3Tabb 3Tabbα← 2Taabα← ∅ ∅
x 8 · 2 · 8 1T← 3Tbbb ← 1Taabα ∅

t 2 · 8 · 2 · 8 3T← 3Tbbbb ←
{
1Tcaabα
3Tbadbd
2Tbadbc

{26, 27}

w 7 · 2 · 8 · 2 · 8 1T← 3Ta← 3Tab3b ←
{
3Tacbdbd
2Tacbdbc {28, 29}

s 8 · 2 · 8 · 2 · 8 1T← 3Tb← 3Tb4b ← 1Tbcaabα←


1Tabadbα
2Tbcbdbc
3Tbcbdbd
3Tbcdabα
2Tbbadbα

{28, 29}

s2 ← 3Tab4b ← 1Taabadbα ∅

x (2 · 8)3 3T← 1Tb← 3Tb5b ← 1Tbabadbα← 1Tcabadbα ∅

x1 7 · (2 · 8)3 1T← 3Ta← 3Tab5b

← 1Tacabadbα← 3Tacdbadbα

←
{
3Tacadbdbd
2Tacadbdbc

{30, 31}

x3 ← 3Tcb5b ←
{
1Tccabadbα
3Tccdbadbα ∅

x2 8 · (2 · 8)3 1T← 3Tb6b
← 1Tbcabadbα←
1Tccabadbα← 5.5 {30, 31}

x
{21, 23, 26, 28,
30} · (2 · 8)3 ← 3T · · · db5b as above using x1 and x2 {30, 31}

x 20 · 8 · 2 · 8 · 2 · 8 3Tb5a← 3T . . . dbdbb4b as above using x1 and x2 {30, 31}
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x
{21, 23, 26, 28, 30}·
2 · 8 · 2 · 8 ← 3 . . . dbdb3b ←


3dbdcbdbd
2dbdcbdbc
2dcadbdbc
3dcadbdbd

ref line t {28, 29, 30, 31}

x 20 · 8 · 2 · 8 3Tb5a← 3Tc

{
db
aa

}
dbdbbbb ref line w or x1 or x2

{28, 29} or
{30, 31}

x
{21, 23, 26,
28, 30} · 2 · 8 ← 3 . . . γddbdbb ref line u, w, s2, x1, x3

{28, 29} or
{30, 31}

x 20 · 8 3Tb5a← 3Tc

{
db
aa

}
dbdbb ←



3Tcdcadbdbd
2Tcdcadbdbc

3Tc

{
db
aa

}
dcbdbd

2Tc

{
db
aa

}
dcbdbc

{28, 29, 30, 31}

x 9 3T← 3cT 3αcT

{
b← 2acT
c← 3ccT

{4, 9}

x {9, 12, 13, 25} · 9 ← 3ccT 3αccT←
{
2accT
3cccT ∅

x {10, 11} 1caT← 2acdT 2αacdT←
{
1aacdT
2bacdT {1, 5}

x {12, 13} 1caT← 3ccdT 3αccdT←
{
2accdT
3cccdT {4, 9}

x {14, 15} 1caaT← 1abadT 1αabadT← 1cabadT 3

x {16, 17} 1caaT← 2bbadT 2αbbadT←
{
1abbadT
2bbbadT {1, 5}

x 18 1ccT← 1abcT 1αabcT← 1cabcT 3

x 19 1ccT← 2bbcT 2αbbcT←
{
1abbcT
2bbbcT {1, 5}

x 20 3Tb5a← 1Tc

{
db
aa

}
dbdb ←


3Tc

{
db
aa

}
dbdbd

2Tc

{
db
aa

}
dbdbc

{6, 7, 8}

x 21 3Tb5a← 3Tca3dbd ←
{
3Tca4dbd
2Tca4dbc

{26, 27} both d’s are b’s

x 22 1Tca3dbc← 1Tca3dbac ∅

x 23 3Tb5a← Tcd

{
ba
cb

}
db

{
3d
2c

}
∅ {2, 26, 27, 28, 29}

x 24 1cabcT← 2accdcT ∅ {1, 5}
x 25 1cabcT← 3cccdcT ∅ {4, 9}
x 26 3Tbbb← 3Tadbd 1Taaadα {2, 26, 27}
x 27 3Tbbb← 2Tadbc ∅ ∅

yy 28 3Tb3b← 3Tcbdbd


1Tccaadα
3Tccdadα
2Tcbaddα
2Tbbaddα

{2, 26, 27, 28, 29}

xx 2Tβbbadd

{
1Tabbaddα
2Tbbbaddα ∅

x 1Tβabbadd 1Tcabbaddα ∅
x 1Tβcabbaddα ∅ ∅

x 2Tβbbbadd

{
1Tab3addα
2Tbb3addα

ref xx ∅

yy1 29 3Tb3b← 2Tcbdbc ∅ ∅

x 30 3Tb5b← 3Tcadbdbd ∅ {2, 26, 27, 28, 29}
x 31 ← 2Tcadbdbc ∅ ∅

This version of the table is cut down to the minimum. The last but one column gives just all RCS’s.

Possible sequences
of LIGR’s It’s effect

The residual CS’s (RCS’s)
excluding those because
of Lemmas 5.4 and 5.5

Extra LIGR’s
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1 2T
b← 1aT 1caT 3

4 · 1 3T
b← 2aT

b← 1aaT 3αadT ∅

9 · 4 · 1 3T
c← 3cT← 1aacT ∅ ∅

{12, 13} · 4 · 1 1caT← 3ccdT← 1aaccdT ∅
25 · 4 · 1 1cabcT← 3cccdcT← 1aac3dcT ∅ ∅
5 · 1 2T← 2bT← 1abT ∅ ∅
{10, 11} · 1 1caT← 2acdT← 1aacdT ∅ ∅
{16, 17} · 1 1caaT← 2bbadT← 1abbadT ∅ ∅
19 · 1 1ccT← 2bbcT← 1abbcT ∅ ∅
24 · 1 1cabcT← 2accdcT← 1aaccdcT ∅ ∅

2 3T
b← 1Tb

{
3Tbd
2Tbc {6, 7, 8}

7 · 2 1T
a← 3Ta← 1Tab ∅ ∅

8 · 2 1T
a← 3Tb← 1Tbb 1Tcbα ∅

2 · 8 · 2 3T
b← 1Tb← 1Tbbb 1Tccbα ∅

20 · 8 · 2
3Tb5a← 1Tc

{
db
aa

}
dbdb

← 1Tc

{
db
aa

}
dbdbbb

∅ ∅

21 · 2
3Tb5a← 3Tc

{
db
aa

}
dbdbb

← 1Tc

{
db
aa

}
dbdbbb

∅ ∅

23 · 2
3Tb5a← 3Tcd

{
ba
cb

}
dbd

← 1Tcd

{
ba
cb

}
dbdb

∅ ∅

{26, 28, 30} · 2 ← 1T∗dbdb ∅5.5

3 1T
b← 1cT 1ccT 3

1 · 3 2T← 1aT← 1caT 3αcdT ∅
4 · 1 · 3 3T← 2aT← 1caaT 3αcbdT {10, 11, 12, 13}
9 · 4 · 1 · 3 3T← 3cT← 1caacT ∅ {14, 15, 16, 17}

{12, 13} · 4 · 1 · 3 1caT← 3ccdT
← 1caaccdT ∅ {14, 15, 16, 17}

25 · 4 · 1 · 3 1cabcT← 3cccdcT
← 1caac4dcT

∅ {14, 15, 16, 17}
5 · 1 · 3 2T← 2bT← 1cabT 1αcdbT {10, 11, 12, 13}
4 · 5 · 1 · 3 3T← 2aT← 1cabaT 3αcdbdT ∅
9 · 4 · 5 · 1 · 3 3T← 3cT← 1cabacT 2αcadbcT ∅
{12, 13} · 4 · 5 · 1 · 3 1caT← 3ccdT← 1cabaccdT ∅ ∅

25 · 4 · 5 · 1 · 3 1cabcT← 3cc2dcT
← 1cabac3dcT

∅ ∅
5 · 5 · 1 · 3 2T← 2bT← 1cabbT ∅ ∅
{10, 11} · 5 · 1 · 3 1caT← 2acdT← 1cabacdT ∅ ∅

{16, 17} · 5 · 1 · 3 1caaT← 2bbadT← 1cab3adT ∅ ∅

19 · 5 · 1 · 3 1ccT← 2bbcT← 1cab3cT ∅ ∅

24 · 5 · 1 · 3 1cabcT← 2accdcT
← 1cabaccdcT ∅ ∅

{10, 11} · 1 · 3 1caT← 2acdT← 1caacdT ∅ ∅
{16, 17} · 1 · 3 1caaT← 2bbadT← 1cabbadT ∅ ∅
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24 · 1 · 3 1cabcT← 2accdcT
← 1cabaccdcT ∅ ∅

3 · 3 1T
b← 1cT← 1ccT 2αccT ∅

1 · 3 · 3 2T
b← 1aT← 1ccaT ∅ {18, 19}

3 · 3 · 3 1T
b← 1cT← 1cccT ∅ {18, 19}

{14, 15} · 3 1caaT← 1abadT← 1cabadT 1αcdbdbT {10, 11, 12, 13}
18 · 3 1ccT← 1abcT← 1cabcT 2αcdbcT {10, 11, 12, 13}
3 · 18 · 3 1cT← 1ccT← 1cabcT 2αcdbcT ∅
3 · 3 · 18 · 3 1T← 1cT← 1cabcT 2αcdbcT ∅
1 · 3 · 3 · 18 · 3 2T← 1aT← 1cabcaT ∅ {24, 25}
{3, 14, 15, 18}
· 3 · 3 · 18 · 3 1T← 1cT← 1cabccT ∅ ∅
4 3T← 2aT ∅ {1, 5}
9 · 4 3T← 3cT← 2acT ∅ ∅
{12, 13} · 4 1caT← 3ccdT← 2accdT ∅ ∅

25 · 4 1cabcT← 3cccdcT← 2ac3dcT ∅ ∅
5 2T← 2bT ∅ {1, 5}
{4, 5, 10, 11,
16, 17, 19, 24} · 5 3T← 2aT← 2b . . . T ∅ ∅
6 1T← 2Tc ∅ ∅
{2, 20} · 6 3T← 1Tb← 2T . . . bc ∅ ∅
7 1T← 3Ta ∅ 2

2 · 7 3T← 1Tb← 3Tba 2Taaα ∅
7 · 2 · 7 1T← 3Ta← 3Taba ∅ ∅
8 · 2 · 7 1T← 3Tbba 1Taaaα ∅
2 · 8 · 2 · 7 3T← 3Tbbba 1Tcaaaα ∅
7 · 2 · 8 · 2 · 7 1T← 3Tabbba ∅ ∅
8 · 2 · 8 · 2 · 7 1T← 3Tbbbba 1Tabadaα ∅

2 · 8 · 2 · 8 · 2 · 7 3T← 3Tb5a 1Tcabadaα ∅

8 · 2 · 8 · 2 · 8 · 2 · 7 1T← 3Tb6a ∅ {20, 21, 22, 23}

20 · 8 · 2 · 8 · 2 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbb4a ∅ ∅

21 · 2 · 8 · 2 · 7 3Tb5a← 3Tca3dbdb3a ∅ {20, 21, 22, 23}
{23, 26, 28, 30}
· 2 · 8 · 2 · 7 3Tb5a← 3Tcd . . . dbdb3a ∅ {20, 21, 22, 23}

20 · 8 · 2 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbbba ∅ {20, 21, 22, 23}

21 · 2 · 7 3Tb5a← 3Tca3dbdba ∅ ∅

23 · 2 · 7 3Tb5a← 3Tcd

{
ba
cb

}
b4a ∅ {20, 21, 22, 23}

26 · 2 · 7 3Tbbb← 3Tab4a ∅ ∅

28 · 2 · 7 3Tb3b← 3Tcbdbdba ∅ {20, 21, 22, 23}
{28, 30} · 2 · 7 · · · ← 3T . . . bdbdba Refer to z4 ∅

20 · 7 3Tb5a← 3Tc

{
db
ba

}
dbdba ∅

8 1T← 3Tb 1Tbb 2

2 · 8 3T← 3Tbb 2Tabα ∅
7 · 2 · 8 1T← 3Ta← 3Tabb ∅ ∅
8 · 2 · 8 1T← 3Tbbb 1Taabα ∅



50 John Nixon

2 · 8 · 2 · 8 3T← 3Tbbbb

{
1Tcaabα
3Tbadbd
2Tbadbc

{26, 27}

7 · 2 · 8 · 2 · 8 1T← 3Ta← 3Tab3b ∅ {28, 29}

8 · 2 · 8 · 2 · 8 1T← 3Tb← 3Tb4b

{
1Tabadbα
3Tbcdabα
2Tbbadbα

{28, 29}

← 3Tab4b 1Taabadbα ∅

(2 · 8)3 3T← 1Tb← 3Tb5b 1Tcabadbα ∅

7 · (2 · 8)3 1T← 3Ta← 3Tab5b dbadbα {30, 31}

← 3Tcb5b

{
1Tccabadbα
3Tccdbadbα ∅

8 · (2 · 8)3 1T← 3Tb6b 1Tccabadbα {30, 31}
{21, 23, 26, 28,
30} · (2 · 8)3 ← 3T · · · db5b as above using x1 and x2 {30, 31}

20 · 8 · 2 · 8 · 2 · 8 3Tb5a← 3T . . . dbdbb4b as above using x1 and x2 {30, 31}

{21, 23, 26, 28, 30}·
2 · 8 · 2 · 8 ← 3 . . . dbdb3b


3dbdcbdbd
2dbdcbdbc
2dcadbdbc
3dcadbdbd

{28, 29, 30, 31}

20 · 8 · 2 · 8 3Tb5a← 3Tc

{
db
aa

}
dbdbbbb ref line w or x1 or x2

{28, 29} or
{30, 31}

{21, 23, 26,
28, 30} · 2 · 8 ← 3 . . . γddbdbb ref line u, w, s2, x1, x3

{28, 29} or
{30, 31}

20 · 8 3Tb5a← 3Tc

{
db
aa

}
dbdbb ∅ {28, 29, 30, 31}

9 3T← 3cT

{
2acT
3ccT {4, 9}

{9, 12, 13, 25} · 9 ← 3ccT

{
2accT
3cccT ∅

{10, 11} 1caT← 2acdT

{
1aacdT
2bacdT {1, 5}

{12, 13} 1caT← 3ccdT

{
2accdT
3cccdT {4, 9}

{14, 15} 1caaT← 1abadT 1cabadT 3

{16, 17} 1caaT← 2bbadT

{
1abbadT
2bbbadT {1, 5}

18 1ccT← 1abcT 1cabcT 3

19 1ccT← 2bbcT

{
1abbcT
2bbbcT {1, 5}

20 3Tb5a← 1Tc

{
db
aa

}
dbdb


3Tc

{
db
aa

}
dbdbd

2Tc

{
db
aa

}
dbdbc

{6, 7, 8}

21 3Tb5a← 3Tca3dbd

{
3Tca4dbd
2Tca4dbc

{26, 27} both d’s are b’s

22 1Tca3dbc← 1Tca3dbac ∅

23 3Tb5a← Tcd

{
ba
cb

}
db

{
3d
2c

}
∅ {2, 26, 27, 28, 29}

24 1cabcT← 2accdcT ∅ {1, 5}
25 1cabcT← 3cccdcT ∅ {4, 9}
26 3Tbbb← 3Tadbd ∅ {2, 26, 27}
27 3Tbbb← 2Tadbc ∅ ∅

· · · 28 3Tb3b← 3Tcbdbd ∅ {2, 26, 27, 28, 29}

29 3Tb3b← 2Tcbdbc ∅ ∅

30 3Tb5b← 3Tcadbdbd ∅ {2, 26, 27, 28, 29}

31 3Tb5b← 2Tcadbdbc ∅ ∅
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5.5.10 The updated set of LIGR’s

Because new LIGR’s have been found, the “can possibly be preceded by” relation needs to be updated as
follows

The augmented set of LIGR’s is now given by

1 2T
b← 1aT

2 3T
b← 1Tb

3 1T
b← 1cT

4 3T
b← 2aT

5 2T
c← 2bT

6 1T
c← 2Tc

7 1T
a← 3Ta

8 1T
a← 3Tb

9 3T
c← 3cT

10 1caT
b← 2acaT

11 1caT
b← 2acbT

12 1caT
c← 3ccaT

13 1caT
c← 3ccbT

14 1caaT
b← 1abaaT

15 1caaT
b← 1ababT

16 1caaT
c← 2bbaaT

17 1caaT
c← 2bbabT

18 1ccT
b← 1abcT

19 1ccT
b← 2bbcT

20.(0− 11)3Tb5a← 1Tc

{
db
aa

}
dbdb

21.(0− 3) 3Tb5a← 3Tca3dbd

22.(0− 1) 3Tb5a← 2Tca3dbc

23.(0− 23)3Tb5a← Tcd

{
ba
cb

}
db

{
3d
2c

}
24 1cabcT← 2accdcT
25 1cabcT← 3cccdcT
26 3Tbbb← 3Tadbd
27 3Tbbb← 2Tadbc
28 3Tb3b← 3Tcbdbd
29 3Tb3b← 2Tcbdbc
30 3Tb5b← 3Tcadbdbd
31 3Tb5b← 2Tcadbdbc

(90)

Because new LIGR’s have been found, the “can possibly be preceded by” relation needs to be updated as
follows

1, 5 4, 5, 10, 11, 16, 17, 19, 24
2 7, 8, 21, 23.(0− 15), 26, 28, 30
3 1, 3, 14, 15, 18
4, 9 9, 12, 13, 25
6, 7, 8 2, 20
10− 19, 24, 25 3
20, 21, 22, 23 7
24, 25 3
26, 27 8, 21, 26, 28, 30
28, 29 8, 23, 28, 30
30, 31 8

(91)

The word “possibly” is included because there may be other symbols in either of the strings T that prevent
a match of the sequences.
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