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Abstract The method of minimization of dimension for systems of first-order p d a l  differential 
equations (PDES) is extended analogously to systems of functional differential equations (mm). 
This method is applied to an exact first-order system of FDEs for the grand partition function of 
a one-dimensional classical fluid giving an alternative derivation of the pair potentials found by 
Baxter, for which exact thermodynamics can be obtained. These potentials satisfy a constant- 
coefficient ordinary differential equation (ODE). The method also gives the eigenvalue problem 
for the thermodynamics in these cases which is illustrated by deriving it explicitly for the simplest 
case, which is the exponential potential. The connection is derived between the finite system 
with extemal field to which the method applies and the infinite system without extemal field. 
‘Ibis clarifies some points in Baxter’s work and sheds some light on possible extensions of it. 

1. Introduction 

The interest in methods for obtaining ‘exact’ solutions for thermodynamics and structural 
properties for problems in classical equilibrium statistical mechanics of fluids defined by 
continuous potentials has continued until recent years. Apart from continuing interest in one- 
dimensional models with nearest neighbour potentials [1,2] a new method applicable to the 
three-dimensional c a e  has recently been proposed by Edgal [3] which makes use of nearest 
neighbour probability density functions (“PDFS) which seem to have been largely ignored in 
the literature in favour of the n-body distribution functions. His scheme leads to an iterative 
process for calculating, simultaneously along the isotherms, the free-energy density and the 
NNPDFs which should converge to the exact solution. The most computationally demanding 
part of each cycle of the algorithm involves calculating an n-dimensional integral for each 
value of the density, where n is the number of particles which have a significant interaction 
with a given fixed particle which acts as a source of external field. Thus n may be ‘a few 
tens’ in practice while N the total number of particles in the system approaches infinity. 
He suggests that the integral may be evaluated by a Monte Carlo method and in principle 
exactness is only obtained when n + CO. The method is particularly appropriate for hard 
spheres and other systems with short ranged potentials and seems to be the natural extension 
to three dimensions of the exact analysis of one-dimensional systems with a finite number 
of nearest neighbours interacting. See for example Lieb and Mattis [4] for references to 
this earlier work. 

t This work was done while I was ;It lhe School of Physics, University of East Anglia. Norwich. NR4 7TJ. UK. 
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In this paper I present an alternative approach to the onedimensional problem based 
on my previous work 151 in the light of a better understanding that I have obtained of the 
necessary theory of partial differential equations (PDB) [6]. Hence I regard [5] as superseded 
by the present paper (except for mention of the beautiful result (4.6) for the nth functional 
derivative of the composition of two functionals). Unfortunately this work has developed 
in a way essentially independent of other recent contributors to the field. This may make 
it hard to understand but I ask the reader’s allowance here because I believe the intrinsic 
interest in the methods used will justify the extra effort needed. 

It has been shown earlier that the grand partition function (GPF) satisfies a functional 
difference-differential equation [7] and it can be written formally as an infinite system of 
first-order functional differential equations (FDEs) in many different ways [SI. I also showed 
[7] how one can formally treat a single first order FDE by the method of characteristics, 
treating functional derivatives in the same way as partial derivatives. Furthermore, I have 
recently shown [6] that there is a generalization of the theory of characteristics for systems of 
first order PDEs inn  independent variables which in some cases gives an effectively complete 
reduction of dimension of the problem to dimension r < n depending on the ‘complexity’ 
of the original system. In a typical case however, there will be no reduction of dimension 
so r = n. I give here a formal extension of this method to systems of FDEs and apply it to 
the 6rst order system mentioned above. This eventually leads to Baxter’s result [8] that the 
thermodynamics for any pair potential which satisfies an ordinary differential equation (ODE) 
of order r - 1 with constant coefficients can be obtained from an r-dimensional eigenvalue 
problem. The thermodynamics are obtained from a limiting process applied to the results 
for finite systems with external field which the method gives. I derive this explicitly for 
the simplest case r = 2 and show how the thermodynamics can be obtained which requires 
a discussion of the approach to the thermodynamic limit for a non-uniform system. This 
clarifies some important points which are not clear in Baxter’s original paper [SI. 

This rederivation of Baxter’s results is important because it is a means of checking the 
new mathematical methods developed here and because it presents Baxter’s idea in a way 
in which generalization may be possible. Specifically, I believe that this could be done by 
using a formal extension to FDEs of an idea implicit in [6] namely repeated use of ‘partial 
reduction to (one) dimension’, solving the resulting equation and reinserting the solution 
back into the original system so reducing the number of unknowns. This may lead to a wider 
class of potentials for which a finite-dimensional problem for the exact thermodynamics can 
be formulated. I am now trying to generalize this idea and then I hope to apply it to the 
above problem in a future publication. 

The layout of this paper is as follows. In section 2 I introduce notation and derive 
necessary and sufficient conditions determining the GPF. Section 3 contains a formal 
argument, generalizing the arguments in [6], giving the procedure for minimization of 
dimension for any system of first-order FDEs. I then illustrate this general procedure in 
section 4 by applying it to the system obtained from the exact equations for the GPF. I 
also derive the explicit eigenvalue problem for the simplest case r = 2 i.e. the decaying 
exponential pair potential. In section 5 I summarize the results of the paper and explain 
how the work might be generalized to other classes of potentials. 

In the appendix I discuss the approach to the thermodynamic limit for non-uniform 
systems in more general terms than are needed here, giving a short derivation of the 
asymptotic form for the GPF which holds for a slowly varying external field and shows 
the validity of local thermodynamics in this case. This result is implicit in the work of 
Percus [9] and is conceptually simpler than many other derivations [lo-121 although the 
latter authors proceed from a more rigorous mathematical point of view. 
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2. Necessary and sufficient conditions for the GPF of the non-uniform system and the 
calculation of pressure 

In the following I shall use square brackets to denote functionals because they are more 
commonly used than the braces I used earlier. I start with the CPF for the one-dimensional 
non-uniform fluid which can be written as 

which can be written in the equivalent form without the factor 1/N! and the integral 
restricted to the domain 0 < LN < L N - I . .  . < L I  < L. KN is the intemal potential 
energy of the system i.e. the mutual interaction energy of all the particles. V ~ N  = 
C,<i<j<Nq4(Li - L j )  when the potential energy is pairwise additive. With the exception 
of the appendix I shall be concerned entirely with a i s  case. In (1) the system is of 1en-d 
L and v ( x )  = pr$(x) where q4 is the pair potential and p = l/kBT. If the external field is 
introduced into the problem of the statistical mechanics of a classical fluid the GPF provides 
a generating functional for the n-particle distribution functions. This was one of the original 
motivations for introducing it into the theory of liquids. It has been conveniently used in 
the form z ( x )  = z e-fivZ(*) by Stell I131 (where z is the fugacity) in connection with cluster 
expansions of thermodynamic properties and correlation functions. 

I have shown in [7, 141 that from Baxter’s recurrence relation for the configuration 
integrals or directly by -differentiation it follows that 

(2) 
as 
aL 
-[L,  z ( x ) l =  Z ( L ) E [ L ,  ~ ( x ) e - ” ( ~ - ~ ) ] .  

Introducing G * [ L , z ( x ) ]  = In &[L,  z(x)l this can be written as 

The form of (3) can be simplified, linearizing the argument function, by introducing 

where /L is the chemical potential, m is the mass of the particles and h is Planck‘s constant. 
The function y(x)  now plays the role of independent variable in the transformed equation 
which reads 

(5 )  

where the new functional G is defined by G[L,  y ( x ) ]  = G*[L, eY(x)]. Then in this notation 
the GPF becomes 

ac 
-= e x p ( y ( L ) + G [ L , ~ ( x ) - ~ ( L - x ) l - G [ L . ~ ( x ) l l  aL 
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Putting L = 0 leaves only the N = 0 term which is 1 so that 

q o ,  z(x)] = 1 . (7) 

Equations (2) and (7) look like an initial-value problem with a unique solution. In fact 
this is true only if the L dependence of E is only in the cut-off of the integrations i.e. 
E [ L ,  z(x)] depends on z(x) only in the range x E [O, L ]  and is otherwise independent of L .  
The general Maclaurin expansion of an analytical functional satisfying this condition is 

This is the expansion of any functional which depends on a single function z ( x )  which is 
zero whenever x c. 0 or x L. The most general analytical functional of L and z ( x )  in the 
interval 0 < x < L would have had the hN factor as hN(L,  L I ,  L z ,  . . . L N )  with additional 
L dependence. 

Substituting this form for E into (2) gives an equation from which one can equate the 
kernel functions because it holds for all z ( x ) :  

fora l l  L , L ! ,  ... L N  and N Z O .  (9) 

By writing down the equations explicitly for N = 0, 1.2.. . it is easy to conjecture then 
prove by induction that 

This may now be inserted into the RHS of (8) giving hoZ[L,  z ( x ) ]  which is the most general 
solution of (2) of the form (8) so the CPF is completely characterized by (2), (7) and (8). 

For any non-uniform system the pressure at x = L is 

which depends only on ,@, fi and V&) for a fixed pair potential q5(x). Moreover BP is 
a function of only L,y(x)  and u ( x )  so the chemical potential fi and VE(X) do not enter 
the problem separately but only in the combination y ( x ) .  Since u ( x )  is fixed in the whole 
argument, the determination of the functional g P [ L ,  y ( x ) ]  gives the thermodynamics of 
the non-uniform system for a given u(x ) .  The functional g P [ L ,  y ( x ) ]  degenerates to the 
function ,@P(y (L) )  when the function y approaches a constant in a neighbourhood of x = L 
sufficiently rapidly as L + 00. This is obvious on physical grounds but its derivation is 
given here in the appendix. 
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3. The method of minimization of dimension for systems of ~ E S  

In this section I describe the formal extension of the methods in [7] and [6] to systems of 
FDEs and in the next section I apply them to reproduce Baxter’s basic results. I am writing 
this in detail here in the hope that these methods will find many applications outside the 
scope of this paper. 

The essential idea is to look for the most advantageous sets of dependent and independent 
variables. For many cases no simplification is possible but for a single first-order FDE 
reduction to one dimension i.e. one independent variable is always possible [7] the result 
extending the classical calculation of solutions along characteristics for the PDE case. Here 
I am concerned with the generalization of this to systems of FDEs. 

~ 

~ ~ 

Let the system of FDEs be 

for the set of unknown functionals ut for 1 < i < p of L > 0 and y ( x )  for 0 < x < W. 

The Fk are the functional analogues of the functions Fk I used earlier in [6] i.e. for given 
L and y ( x )  the Fk depend on the ui and their derivatives only at the same point (L,  y ( x ) ) .  
Upon inserting a set of known functionals ui[L, y(x)]  the Fk become dependent on L and 
y ( x )  only. Here 0 < L < w and the function y ( x )  is allowed to range over the space of 
all functions defined on the interval 0 < x < 00. The total derivatives are 

- = _  

and 

6Fk a ( Sui )I. 
6 ( G U ~ / S Y ( S ) )  aL SYW 

( 14) 

Let h [y(x) ,  U, F ,  dF/dL, dF/dy(t)] be afunctional which depends only on L ,  y (x ) ,  ui(x) ,  
aui/aL and aui/.3y(x) after expressions for F and its total derivatives have been inserted. 
In general such a functional without this condition will involve second derivatives of U. 
This condition is that all the second derivatives vanish i.e. 

def Such a functional gives a new equation F,+I =h - h(F = 0) = 0 necessarily satisfied by 
the ui which satisfy FI = . . . = F, = 0 already. The complete independent set of all 
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such functionals must be found at each,stage and the whole process repeated until no new 
independent such functionals are obtained. The resulting system Fi = 0 for 1 < i < m, 
where m now denotes the number of equations in the new augmented system, is said to 
be complete because there are no extra integrability conditions. This is analogous to the 
method I used in 161 for systems of nonlinear PDE to obtain all the integrability conditions. 
This is a very difficult task to carry out in general. The method is probably most useful 
when the system (12) is already complete but not known to be so. The equations for h 
must then show that h has no dependence on the derivatives of F k  and this demonstrates 
the completeness. 

The following argument shows that the conditions satisfied by h can be written in 
simpler form. 

Equation (15) can be written as 

From (13) the last derivative is 

wherethelastfactor6([s',r'},[s,t)) canbeeasilyshown to be 1[6(s'-s)s(t'-t)+S(s'- 
t)S(t' - s)] provided the obvious extension of the definition of the functional derivative to 
functions of two or more variables is taken: 

and the symmetric function S2u,/(6y(s)8y(t)) is replaced by the equivalent explicitly 
symmetrized form. Hence (15) can be written as 

for 1 < i p ;  0 < s. t < CO. Similarly from (16) 
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The finally from (17) it follows that 

= O  for I < i Q p  ah a f i  
k=l a (dFk/dL) a (aui /aL)  

The next step in the general procedure is to look for linear combinations 

of the equations such that if the new continuum of variables z ( x )  and ZI . . . z,  are introduced 
in place of L ,  y ( x )  then each equation is independent of all derivatives with respect to z(x) .  
( L  will be assumed to be varying over these r-dimensional subspaces of the function space 
so that one can assume z1 = L without loss of generality.) From the introduction of the 
new variables it follows that 

and 

Applying this change of variables to (25) the reduction of dimension to r requires that 

Using the chain rule, this can be expressed in terms of derivatives with respect to the original 
variables thus 

Using the equations from the change of variables above, this can be simplified to 

which is a set of FDEs for z ( t )  of the form 

for fixed i and CY once U is known in terms of L ,  y(x) .  Although the U are not known 
yet, these equations can still be used to help setup the conditions for determining the z( t ) .  
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Regarding f as a vector field on the space of points S = { ( L , y ( x ) ) ) ,  with a separate 0 
component and a continuum of components indexed by s, one can proceed analogously to 
the finite-dimensional situation by noting that the z ( t )  must all be independent variables 
and are therefore independent solutions of (31) with f replaced by fiDl where 

This suggests that the Lie algebra generated by the fin has orbits of dimension r i.e. the 
fim generate an r-dimensional manifold. To find the consequences of this, take the fie and 
take commutators and appropriate linear combinations to get a set of r commuting LI vector 
fields bo in terms of which the fi, can be expressed thus 

i.e. 
r r 

fi.0 = ~ h i p & 5 o  and f i c ( ~ )  = C A i p a b p O )  (34) 
@=I 

where the Ai#* are functions of (L, y ( x ) )  for a given u[L, y(x)]. In each r-dimensional 
subspace of S in which the z ( f )  are all fixed, the 21.. .zr vary so the a/azp  must be 
interior to them and commuting so choose alazp  = bp or in components a y ( r ) / a z p  = 
bp(t)  and aL/azp = bpo. From the original system (12) I have the equations 

d m  - Fkh.i = 0 
k=, 

which together with (12) yield 

Substituting (13) into (35) the third term becomes (using (32) and (34)) 

and the last term simiIarly becomes 

From the chain rule 
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Hence using a l a z p  = bo the equations become 

for 1 < a < m' and 0 < s < 00. A similar argument shows that, starting from 

2 Fkh,k = 0 
dL  k c l  

and using (14). the chain rule, (32) and (34) the equations 

hold for 1 < a C m'. Also from the chain rule, and assuming that L = z I  , 

Equations (37), (38) and (39) are the analogues of (55) and (56) of [6] and are the 
required equations involving only r independent variables as expected. The original 
independent variables y ( x )  and the original unknowns U T  . . .U,, and their first derivatives 
aui/aL,  Bui/6y(s) should now be regarded as the new unknowns and Z I  . . . zr as the new 
independent variables. In a systematic procedure for dealing with systems of the type (12), 
linear combinations a for which r = 1 should be sought first followed by those for which 
r = 2 etc. Of special interest are cases when the same set of vectors bp will serve for a 
number of independent linear combinations of the system. If this number is equal to m the 
number of equations in the the system, the h,k are completely arbitrary and the coefficients 
of them may be equated to zero to get the reduced r-dimensional system. This happens in 
this paper with r 2 2 in the analysis in the next section of the equations defining the GPF. 

4. The exact treatment of the equations for the GPB 

To illustrate the technique of minimization of dimension of systems of FDEs described above 
it is necessary to express (5) as a first order system. In the RHS the difference term can be 
replaced by its functional Taylor expansion to N terms and later I will let N + M. The 
result is 

(40) 

which becomes formally exact as N + ca. Now the functionals U I  . . .UN, each dependent 
on L and y ( x )  are introduced by the following equations 
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Then in terms of the auxiliary variables U ,  . . . U N  equation (40) becomes first order: 

hence in the notation of section 4 the resulting first order system of FDEs can be written as 

The first step of the procedure described above is to Write down the derivatives of FK 
WRT Sui/Sy(x) and auJaL and obtain the equations for h to obtain the completion of the 
system (43) and (44): 

The equation (21) for h becomes 

= O  ~~ (47) 

for 1 4 i < N ; O  6 s , t  c CO. Doing the sums and specializing to the case s = t and 
assuming U # 0 gives 

From (23) for h, 

= O .  (49) 

For i = 1 it reduces to 

so from above 
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The other cases are easy, combining to give 

The final equation (24) for h is now trivial. Hence the conditions on h,  (48) and (52), imply 
that h has no dependence on any of the first total derivatives of the Fh hence the system 
(43) and (44) is complete. 

The next step is to write down the vector fields fiu in (32) with separate 0 component 
and the continuum of components fi&) for 0 < s < CO which are defined at each 

point ( L ,  y(x)) for 0 < L < bo and y(x) defined on 0 < x c CO. They are given by 

which for the above system simplify to 

for 1 < i < N .  Hence for each pair (La), fiu is a linear combination of two vector 
fields which can be expressed in components as ( L O ) ,  (0, u(L - 3)). Since this basis is 
independent of the choice of linear combination U ,  any linear combination of the original 
system is reduced in the same manifolds i.e the system is completely reduced to the number 
of dimensions r which is equal to the dimension of the manifolds generated by the two 
vectors. To determine this dimension a commuting basis in terms of which the fie can be 
expressed must be found. The differential operators associated with the vectors are 

Since 61 is constant in these coordinates L ,  y ( x )  

Furthermore, 

where uti) is the i t h  derivative of u ( x )  and 6, appears i times. It also follows that the 
commutator of any pair of these operators is zero so that the set of operators 

T, = {bl; [ 6 ] ,  [61, . . . [bl, 621 . . .] where 61 app& i times for i = 0, 1 ,2 . .  .} (58) 

is closed under commutation i.e. forming a commutator of any pair of operators in T, 
generates another one in T,. Therefore r is the number of LI operators in Tr. Hence 
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for all s, L ,  y ( x ) .  But Bi and A cannot depend on y(x) .  Alsoequating the a /aL  components 
gives A = 0. Taking the s component gives 

r-2 

u”-”(L - s) = Bi(L)ua(L - s) For all s and L . (60) 
i=O 

Finally Bi cannot depend on L so U(‘ - ’ ) (X)  = ~~~~ Biu(’)(x) so for the r-dimensional case 
u ( x )  must satisfy an ODE of order r - 1 with constant coefficients. This agrees with the 
condition Baxter found for his equations to be finitedimensional. 

I will now derive these equations explicitly for the simplest case r = 2. Obviously 

u ( x )  = DeBx (61) 

where 0 is an arbitrary constant. Now a _commuting basis bl, b. for the vector space 
spanned by 7‘’ must be found. Let bi = bl and bz = ab1 + ,9bz where a: and ,9 are 
dependent on L and y(x ) .  Then 

6,. a61 +&I = P G l ,  621 + 81(/3). A + &(a:) .61 = 0 

or in components 

(0, ,9u’(L - 3)) + 0, -IJ(L - .)) + (E, 0) = 0 ( ,”BL 
hence a0rla.L = 0 so a: = a:[y(x)] and pu’(L - s) + (ag/aL)u(L - s) = 0 which is a ODE 
for 6 at fixed y ( x )  when combined with (61). It has the general solution j3 = e-BLc[y(x)].  
Hence the general solution for bz is 

and the simplest choice giving LI bl and bz, is 

The general theory can now be used to construct the corresponding equations in the two 
independent variables z1 and zz. To do this the coefficients higm have to be identified 

so comparing with (54) shows that 

The derivatives of Fk WRT y ( s )  taken at constant aui/aL and 6ui/Sy(s) but allowing ut to 
vary are 
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Introducing the new variables e l  = L and z2 by the relations a/azl = bl, a/azz = bz the 
derived equations (37) become 

for 1 < 01 < N ;  0 < s < 60. A similar set of equations derived from (38) can be written 
down but they will not be needed here. Since (67) hold within the same 2D manifolds for 
each value of CY one can equate the coefficients of huk.  It turns out that only the cases 
2 < k < N will be required in which case one obtains 

from which it follows that 

From the original system of FDEs (44) this leads to the result that 

Using these last two results, and the identity 

from (42) the exponential term E in (43) simplifies giving 

Letting N + 00, this gives formally from (43) 

exp[y,,(L)+ul(~,z2--e") - ~ I ( L z z ) ]  aul  
aL 
-=  

where y,,(x) is given by the equation 
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with solution yz,(x)  = z p ( L  - x )  ecEL + y~(x). Hence, substituting for yzl(x)  and u ( x )  
from (61) and remembering that U, = In B one obtains from (71) 

- B [ L ,  Dzze-BX + y&)] = e  

which is easily seen to be equivalent to the exact equation (3.1) of [7] which can be written 
as 

(73) (ZrDC-DL+Yo(U) q ~ ,  2 2 ~  e-B.x - ,B(L-x) + a 
aL 

a 
- E [ L ,  y(x)l= eY(')s[L, y(x) - U(L - x ) ]  
a L  (74) 

where the substitutions y ( x )  = y&) + Dz2e-BX and u(L - x )  = D eB(L-x) have been 
made which make this equation effectively two-dimensional. 

To show this explicitly define 

E*(L,zz) = B [ L ,  Dzze-Bx+yo(x)] (75) 

for fixed yo@), 0, and B. Then it follows that 

a s* 
( L , z z )  = e x p [ z ~ D e - ~ ~ + y o ( L ) ]  E' (L,zz-eEL). (76) 

Now introduce the new variable z3 = zz e-B' to transform (76) to variables separable type, 
then 

Let %(L,zj) = Z*(L,zz) then (76) can be written in terms of %(L,z3)  as follows: 

If yo is a constant function one can look for solutions E ( L ,  23) in the form fi(L) fz(z3). 
Inserting this into (77) and dividing by f,(L) f~(z3) according to the usual method gives 

Introducing y = f;(L)/ fi(L) which from (78) must be a constant, then fi(L) = cy e y L  
and 

yfz(z3) = exp(Dz3 + Y O ) ~ Z ( Z ~  - 1) + BZ3f;(Z3). (79) 

Denote the solutions of (79) by fZy(zj) (with an arbitrary normalization constant) then a 
solution of (77) is E ( L ,  23) = cy eYL fzY(z3) and hence because (77) is a linear equation 
the solutions can be superposed giving the general solution of (73) in the form 

E(L,zj) = CcYeYLfZy(z3). (80) 
Y 



Functional differential equations 1421 

The constants cy must be chosen so that 

This determines all the cy and hence gives the unique solution for E for the system of 
length L with y(x) = yo + Dz3 eB('-'). 

In order that k ~ T u ( x )  is a physically acceptable pair potential it is necessary that B < 0. 
There is therefore an external field parameter y(x) which increases exponentially with x 
and so (l/p)(alnE/aL)/y givesthe pressure at x = L in the non-uniform system but 
it cannot be equated with the thermodynamic pressure for the system given by u(x)  and 
y(x) = constant which is what I wish to obtain. The way round this is to calculate the 
pressure at x = 0 instead. This can be shown to be given by (I/p)(a In E/aL) ly  where 
F(x) = y ( L - x )  by the change of variables x -+ L - x  applied to the particles of the system. 
In this case y(x) = yo(L-x)+Dzz e-BL. eBx which can be made to be a fixed function of x 
by choosing yo = constant and zz ecBL = 23 also constant. Also y ( x )  = yo + 0 2 3  eBL e-Bx 
is a function which approaches yo as L + 00 keeping 23 fixed. Hence in this limit the 
pressure at x = 0 given by (l/p)(aln E/aL)], ,  will approach P(y0). the thermodynamic 
pressure evaluated-for a uniform system with Inz = yo as shown in the appendix. 

This justifies the choice of 23 ai new variable and 

which is the eigenvalue yo of 

vfZfZ3) = exp(Dz3 + YO)fZ(Z3 - 1) + BZ3f;(Z3) (83) 

with the largest real part. This follows because it is the term corresponding to the largest 
eigenvalue which dominates the numerator and denominator as L -+ 00. It is easily seen 
that (83) may determine a piedewise analytic function on successive intervals of unit length 
but there is also the condition that fz is analytic. This follows from E* being analytic 
WRT z2 (which controls the strength of the external field in (75)). This condition is referred 
to as the eigenvalue condition because it requires y to be an eigenvalue of the operator 
applied to j 2  in the RHS of (83). I should point out that the whole problem has now been 
reduced to a 3-parameter ( D .  B ,  yo) eigenvalue problem in one dimension but because one 
of the parameters ( B )  has dimensions L-' which is related to the lengh of the system this 
parameter can be removed by a change of variables. 

Using (61), with the GPF for the uniform system expressed in the form 8(z, L, D. B )  the 
change of variable BLi = Li shows that the GPF can also be written as E(z/B, BL, D, 1). 
Using the formula pP = limL,,In E/L gives yo(z, D, B )  = yo(z/B, D ,  1) x B. This 
also follows from (83) by dividing by B~leading to the 2-parameter eigenvalue problem for 
y* = y / B :  

y * f ( x )  = teD"f(x - 1) + x f ' ( x )  (84) 

where f = z/B and the eigenvalue with smallest real part is yo/B because B < 0 the 
eigenvalue condition is that j is analytic. 
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5. Summary and outlook 

The method of minimization of dimension for systems of PDES [6] has been formally 
extended to systems of FDES and the method has been successfully applied to a functional 
Taylor expansion of the general equation satisfied by the GPF of a one-dimensional classical 
fluid which is really an identity derived by differentiation. The method reproduces Baxter’s 
181 solvable cases for the thermodynamics and correlation functions when the system of 
FDEs is simultaneously reducible to lower dimension i.e. when the pair potential satisfies 
a constant coefficient ODE. I have illustrated this general result by rederiving the explicit 
eigenvalue problem for the simplest of these cases namely when the pair potential is of 
decaying exponential form clarifying the role of the external field and the approach to the 
thermodynamic limit. 

Furthermore, I have recently found a’ simple example of a system of PDES which may be 
completely analytically solved by repeated ‘partial minimization of dimension’ i.e. reduction 
of dimension of a linear combination of the original system to one and re-inserting the 
analytic solution of the equation obtained so reducing the number of unknowns by one at 
each step. The system was about the simplest possible i.e. a constant coefficient linear 
first order system with three equations, three unknowns in three dimensions which does not 
involve the undifferentiated unknowns. It seems that in general the system of P D E ~  must 
be of a very special type (though not necessarily linear) to be amenable to this simple idea 
based on my earlier [6] work but a formal extension of this idea to FDES must be possible 
and this might extend the class of potentials for which the thermodynamics can be obtained 
exactly or provide the framework for a proof that this class cannot be extended (for the 
finite potential single component case). I hope to report on this shortly. 

Finally I would like to make a remark on the possible extension of the methods to real 
three-dimensional systems. It has always been my long term aim to obtain practical methods 
to exactly solve problems of physical interest in this field but I have always believed that 
the mathematical developments needed’would be discovered by first trying to solve one- 
dimensional problems and then trying to generalize them. In this context I believe that an 
important idea is contained in the work of Edgal [3] cited in the introduction, namely the 
ordering of the particle coordinates which makes his formalism for the three-dimensional 
case look in places like that appropriate to a one-dimensional system. Since the supposed 
absence of such an ordering relation in three dimensions was once thought to be the reason 
for the non-generalizability of the methods in one dimension to three dimensions I think 
some generalizations may be possible to three-dimensional systems using this idea. 
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Appendix. Thermodynamics and the finite non-uniform system 

I shall start by giving a derivation of an important identity used by Lebowitz and Penrose 
[15] to obtain rigorously the thermodynamics of systems with an additional weak long 
ranged Kac potential. 
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Consider an expression involving the multiple integration 

I want to equate this to an expression involving integrations over the subintervals '& 
for 1 < i < M which form a partition of the interval [O, L]. Since one can write 
S t d L l  = E,"=, J,, dL1 it follows that 

From the sequence (il , iz . . . i ~ )  the set of 'occupation numbers' nl , n2. . . n y  can be found, 
nj being the number of times j appears in the sequence (il . . . i ~ ) .  Li represents the 
coordinate of the ith particle in the system and nj is the number of particles in the subsystem 
S2,. Each sequence (nl . . . n ~ )  can be obtained from many distinct sequences (il . . . iN), 
their nuniber being obtained from the following argument from probability theory. This 
is equivalent to asking for the number of ways in which M boxes can be filled with a 
total of N distinguishable objects with nj objects in box j for 1 < j ,< M. Box 1 can 
be filled in N ! / ( ( N  -n~) !n j ! )  distinct ways. For each of these, box 2 may be filled in 
( N  - n I ) ! / ( ( N  - nl - nX)!n?!) distinct ways, etc. Hence the total number of ways of filling 
all the boxes is the product of these cancelling down to N ! / ( n l ! n ? ! .  . . n ~ ! ) .  Returning to 
the integrals one obtains the transformation 

n,=N 

Hence regrouping the integrals and renaming the integration variables on Qj as Ly' . . . L y '  
it can be written as 

EE,n,=N 

If for all N 2 0, f~ is a symmetric function of its N arguments summing over N removes 
the restriction and interchanging the sum and products gives 

x fN  (,!,il). . .Ly", L t ) .  . . L p ' ,  . . . Lf!. . . L p ' )  (AI) 

the symmetry o f f ,  allowing its arguments to be rearranged. This is the basic identity that 
was needed. In the right hand member of (Al) the product over j indicates the application 
of M commuting integral operators to f N .  The nj = 0 terms represent 0 integrations which 
is by convention the identity operator 1. Putting 

N 

fN(LI , , . LN) ~ e-Ph(Lt,..Ld n z ( L i )  
i=l 
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where VJN is the internal potential energy of the N particle system (not necessarily pairwise 
additive) it becomes the GPF. I can set M = 2 and write VJN = E:=, VI.., + I Q , . ~  where 
In,,nr is the potential energy of interaction between the subsystems QI and Qz. Hence from 
(AI) 

Dividing this by the corresponding expression with I,,,,, = 0 following gives the grand 
canonical average (e-g'al.%) of e-fl'*A with the two systems C2, and adjacent but 
non-interacting i.e. the joint probability distribution of configurations of the system QI + S22 
is the product of the distributions of the configurations of the subsystems S21 and Qz. With 

= 0 (A7J gives 

X*[Z(X), 0 < x 4 Ll = E[z(x),x E Qil  x E[Z(X) ,  x E Qzl = 616, (A31 

where in 6' all contributions to the potential arising from sets of particles with some 
particles in each subsystem are zero. Equation (A2) can be written as 

where IQil is the length of subsystem i. In the following I shall be concerned with the 
asymptotic analysis of 6 obtained by requiring y(x) to vary with L in a specified way as 
the limit L -+ 00 is taken. A simple way to formulate this is to specify a function y which 
varies over the space of points (L, y(x)) and which is required to be fixed for the limiting 
process. In order to include the case Y(x) = y(x/L), the macroscopic external field, I 
define 

Xf) = u t ,  L, Y(X)l .  ( A 3  

Suppose that K and are such that there exists a function Qz(L) such that L/S22, Q, + 00 

as L + 00 and y ( x )  approaches a finite constant value on Q2 = [L - IS221, L]. Under these 
conditions the density is going to become constant on Qz as L increases and (e-%%) 
can be assumed to be independent of the sizes of the subsystems provided they are large 
compared with the range of the pair interaction u(x). Then from (A4), independently of the 
way that L /& S22 -+ CO, 

In E - In  El In 6 2  

Lln2.h-m IQ21 1n31-m IQ21 
lim = lim -. 

To express (A4) fully requires three independent variables for 6 namely 

(1) L determining the relationship between y and y, 



Functional diffeerential equations 1425 

(2) j ;  the macroscopic external field parameter determining y the external field parameter, 
(3) s between 0 and 1 determining the fraction of L which is the length of the system, 

i.e. %[L, j ; ,  SI is defined as follows: from L and j ;  obtain y from the inverse of (A5) and 
the length of the system is sL  from which B is defined by (1). Thus 

In the limiting process defined above L/lS2zI + CO hence the first quotient on the RHS 
can be replaced by its limiting value (a/as)InB[L, j;,s]l,=1 under the limit. Finally the 
limit can be represented by L + CO because the only remaining free variable j ;  is a fixed 
function: 

From (1 1) and changing to the above notation 

where PL is the pressure at x = L in the system given by y ( x )  for 0 Q x Q L: Combining 
(AS), (AS) and (A6) shows that 

The LHS is the limiting value of p P  at x = L which is shown to be equal to the usual 
expression for the thermodynamic pressure limL-tm In B/L and the result, by the RHS, 
depends only on the unique limit y = limL+m y ( x ) l y r  E Q2 so the relationship between the 
pressure P and the external field y at the same point x = L approaches a limit, independent 
of K provided K satisfies the condition above. It is the same as the thermodynamic 
relationship P ( y ) .  

By using the identity (AI) in a different way it is possible to give a short elegant 
derivation of the asymptotic form of the GPF discussed rigorously in [ll] and which is 
intimately related to local thermodynamics [16,9]. From (AI) with the same fN, arbitrary 
M and writing 

where I ,  is the interaction energy between the M subsystems S2j it follows by a similar 
argument to the derivation of (A4) that 

The subscript is intended to indicate that the grand canonical average is taken with the 
interaction terms ZM removed from the total potential energy. This can be written as 

. (A12) In ~ [ y ( x ) ;  o < x 6 L ]  1 In ~ [ y ( x ) ;  x E ~ l j ]  ln(e+’‘M) 
+ L  

=-E 
L M j = l  L / M  
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I now suppose that y ( x )  = y * ( x / L )  so that the whole system is in a slowly varying external 
potential. As before a physically reasonable assumption will be made namely that 1, is 
roughly a sum of contributions from neighbouring subsystems so that ( I M )  and (e-$’”’) 
are of order M .  Hence letting M ,  L / M  -+ 60 keeping y* fixed and assuming that the 
thermodynamic limit exists for each subsystem 

Jo  

There is however a non-local correction [16] to a n p p  involving the total correlation 
function of Ornstein and Zemike. This shows the limitations of this result and will give 
significant corrections in the o(L) term when y ( x )  varies significantly on the length scale of 
the total correlation function. In particular these corrections will be significant for uniform 
systems when L is not very large compared with the range of the correlations as occurs in 
the neighbourhood of the critical point [17]. The same considerations must apply to (A10) 
which is consistent with the expectation that numerical methods based on this formalism 
for the calculation of P ( y )  will fail in a neighbourhood of a critical point, should one be 
found. 
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