
Date: 2025-12-30

Turing Machines

Abstract

Developments are given here for the analysis technique for non-
terminating Turing Machines (TM’s) that I described earlier in [?] and
[?]. The main new ideas are the introduction of IRR patterns i.e. con-
straints satisfied by large sets of IRRs (Irreducible Regular Rules) and
the logical relationships between them as a result of the general method
for deriving IRR’s from others described in my earlier paper. These log-
ical relationships will be referred to as IGR’s (IRR Generating Rules).
IGR’s have been reduced to their minimal form in a way analogous to
the way in which regular rules were reduced to IRR’s by taking out
symbol strings that played no essential role. In the case of IGR’s these
symbol strings (actually pairs) will be referred to as context pairs. A
new version of my computer program extending the previous analysis is
described and is freely available that generates these IGR’s up to a given
length of IRR’s that they generate. The results show repetition of the
left hand halves (Left IGR’s or LIGR’s) of IGR’s associated with differ-
ent right hand halves. Because the LIGR’s can be derived independently
of the right hand halves of IGR’s, this should be done separately and
can be done using the currently known IRR’s as previously described in
my earlier papers. The LIGR’s can be used to calculate all the IRR’s
of a TM. A procedure for the generation of all the LIGR’s for a TM
has been suggested and is expressed here by a detailed analysis of a TM
though not yet as computer code.

Mathematics Subject Classification: 68Q25

Keywords: Turing Machine (TM), Irreducible Regular Rule (IRR), IRR
Generating Rule (IGR), LIGR (Left IGR).

1 Introduction

I plan this is the last version that includes a lot of material that probably will
not be needed. It will be available as an old version but hopefully a much
shortened version will take its place as the latest version under active editing.

I think there will be a long section that could be in an appendix that is
not needed initially at least.

The diagram Figure ?? does not have a complete description of the inter-
relationships between the loops indicated in parentheses. This is contained

2 John Nixon

in (??), (??) and (??) which were updated together with some text on page
59. Also Figure ?? does not have the result (??) which is equivalent to Ta-
ble ?? which is also summarised by Figure ?? and shows how the TM can be
‘trapped’ in a steady movement to its left. The results (??), (??), (??) and
(??) seem to be adequately describing the TM. (??) can only be deduced in
this paper once attention is drawn to the vacuosity of LIGR’s with LHS 3b5d

which in turn arises out of the analysis of the completeness of the LIGR’s (the
very long proof). There could of course be other ways of getting this result
but this seems to be the only systematic way to do it.

Once some basics are understood, probably the reader can jump to around
page 59.

Table ?? is now hopefully complete and correct and the following sum-
mary ??. Things to be corrected:

• section ?? needs some discussion because the two examples are so differ-
ent.

Some general heuristics are given right at the end regarding using the IGR’s to
generate a description of the action of a TM in terms of ever expanding cycles
(when possible). The TM (??) is an example of this while TM (??) is not.

Table ?? was reorganised (Table ??) in terms of LIGR’s and RIGR’s(Right
IGR’s). This document is a work in progress. As such it is incomplete and still
has errors and omissions. When brought to a state where I cannot easily find
any improvements it will form my next paper on Turing Machine analysis.

Section 2 is a quite dense summary of the previous methods that lays the
foundations of the developments to be described in this paper. Section 3 intro-
duces IRR patterns (IRRP’s) as sets of IRR’s conforming to the pattern. They
have some common symbols in the origin and the RHS of the IRR and allow
for any LHS. Section 4 introduces IGR’s in terms of IRRP’s and illustrates
the fact that IRR’s of any length can be derived from sequences of IGR’s by
a sequence of substitutions. In Section 5 the detailed description of an IGR is
given and proves the generation of IRR’s from IGR’s. A computer algorithm
is described for generating them all up to a given length for a TM and its re-
sults are shown for an example TM. In Section 6 a necessary condition in the
relation “can be followed by” for IGR’s was found. Further results are found
for the set of IGR’s that can follow a sequence of IGR’s following each other
(i.e. substituted into each other) hand calculation of which suggests a method
for generating all of them for a TM though this appears practically impossible
for the example TM because of the large number of cases to be considered. In
Section 7 left IGR’s or LIGR’s are introduced because in section 6 the LHS and
RHS of an IGR can be developed independently. An algorithm is illustrated
by example for finding all the LIGR’s for a TM based on the above ideas and
results.

Developments in the analysis techniques for non-terminating Turing Machines 3

A lot of material has been removed to 2017’s Notes on Turing Machines.
These notes are now mostly superseded, but there may be a little there that
is of use.

Comments are welcome. Please send them to john.h.nixon1@gmail.com

2 Basic definitions and summary of the exist-

ing method (F) to generate the IRR’s for a

TM

A configuration set (CS) for a TM is a set of complete configurations (tape
symbols with pointer position indicated, and the machine state of the TM)
such that the CS is specified by giving a finite set of symbols in a set of
contiguous pointer positions together with the machine state and such that
the pointer position is where one of the given symbols is given or adjacent to
one. In a CS all possible configurations that are consistent with the specified
symbols and machine state are included. The notation is the specified symbol
string with the pointer indicated by an underscore (it is just off the end of the
symbol string) or an underline and the machine state on the left. For example
with machine states 1,2,3, etc. and symbols lower case letters the following
are CSs: 2abca, 1 aabbcac. The length of the CS is the length of the symbol
string which is finite.

A computation rule or rule is a pair of CS’s linked by → indicating the
forward direction of the computation. A reducible rule is one that has symbols
that play no part in the computation i.e. any extra symbols added on the left or
right of the strings at the left and right hand sides of a computation rule. From
the definitions of regular rules (RR) and irreducible regular rules (IRR) in [?],
any computation of the TM that ends with the pointer just off the end (i.e.
adjacent to a symbol at the end) of the string of symbols specified at the start
can be represented by RR’s chained together as a sequence of CS’s starting
with one of length 1, where for each step in the chain a new symbol is read at
a position where no symbol has yet been read at the pointer, thus the length
of the string of symbols increases by 1 for each RR unless a stationary cycle
occurs that ends such a sequence. All such CS’s are by definition reachable. All
single TM steps are RR’s. If the RR is of type LR or RL as designated earlier
(now the position of the pointer in the origin (see below) is included so these
are now RLR and LRL respectively) the pointer swaps ends at that step of the
chain and these RR’s are also irreducible RR’s (IRR’s) because if the pointer
swaps ends there are no redundant symbols i.e. the rule is irreducible. There
are also IRR’s that that don’t swap ends. If a CS called “origin” is included
with the LHS and RHS of the IRR it can be written in the triplet form as
origin → LHS → RHS for which the abbreviated form origin →→ RHS will

http://www.bluesky-home.co.uk/2017_Turing_notes.pdf

4 John Nixon

be used if the LHS is not specified hence the changed designation of the type
of an IRR. An origin (there could be many for the same LHS) of an IRR is a
CS obtained by running the TM backwards starting from the LHS to a point
such that the pointer position is at the opposite end of the string from where
it is in the LHS.

If an RR is of type LRR or RLL it is related to an irreducible form (a
possibly shorter IRR which only involves the symbols passed by the pointer
during its execution) as follows. Suppose the RR is represented by m→ n→ o

where m < n < o and n + 1 = o where italics represent the corresponding
pointer positions for the CS’s in typewriter font. Then the RR has type LRR
because the start and end points of the i.e. the LHS and RHS have the pointer
at the right hand end of the string. The rule n → o can be represented as
n′ → p′ → o′ without any redundant symbols where m ≤ p ≤ n < o and
the primes indicate shortening of the strings by deleting the symbols below
position p i.e. p is the leftmost pointer position in the computation from n to
o. n = p holds if and only if n′ = p′ and n′ → o′ is a single TM step. If n ̸= p
the rule n′ → p′ shows that p′ is reachable therefore n′ → p′ → o′ represents
an IRR of type RLR, and of course the mirror image result applies to IRR’s
of type RLL.

In general let X be a member of IRR(n) i.e. the set of all IRR’s with CS’s
of length n. Then X can be represented as A→ B→ C where the pointer swaps
ends between A and B (thus this is either 1 → n or n → 1 and is referred to
as condition 1) to establish the reachability of B necessary for X to be an IRR.
There may be more than one such CS A for a single B and the set of all such
A will be denoted by O1(B) (the same as S(B) in [?]), the 1 referring to the
backward searching algorithm that terminates in condition 1 (see [?] section
2.2). Likewise if it terminates in condition 2 i.e. the pointer comes back to
where it was at the start of the backward search, the set of such endpoints
will be denoted as O2(B), but these do not confer reachability and will not be
referred to as origins. If the pointer is at the right in A and at the left in B

then at C it can be at the left or right so that X must be represented as either
of the triplet forms n→ 1→ 0 or n→ 1→ n + 1 and having types RLL and
RLR respectively. Likewise if the pointer is at the left in A (the mirror image
forms), X must be represented by either of 1 → n → n + 1 or 1 → n → 0,
having types LRR and LRL respectively.

If B is reachable but forward computation from it leads to a CS that has
arisen before in this computation, this is a stationary cycle and the type of
the IRR is then LC or RC. If the reverse computation path from B leads to a
stationary cycle, then this cycle must include B to avoid a branch point in the
forward computation that would not then be unique. Thus likewise the IRR
is of type LC or RC.

From the definition of RR in the first paragraph of this section, if in the

Developments in the analysis techniques for non-terminating Turing Machines 5

backward search from the LHS of an IRR, the pointer again reaches the same
position it had in the LHS (condition 2), however much further back the back-
ward search were to continue, it would not be possible from this alone to show
that this LHS is indeed the LHS of an IRR. This is because if the computation
is again run forward, this LHS has the pointer at the same point as a previous
CS and is therefore not shown to be one of the list of CS’s playing the spe-
cial role in the above definition, though it could possibly be shown to be one
as a result of another backward search path. This is the justification of the
terminating condition 2 in the backward search algorithm. See [?] page 30.

This proves that

Lemma 2.1. The triplets 1→ n→ 0, 1→ n→ n+ 1, and n→ 1→ n+ 1,
and n→ 1→ 0 representing TM computations each form an IRR (type LRL,
LRR, RLR or RLL respectively) if and only if the origin indicated (the first
member) is the first CS arrived at with the pointer in that position after tracing
the computation back from the LHS (the middle member) and the pointer does
not occur again in the position it had in the LHS in the reverse computation
path from the LHS i.e there is no other CS 1 or n between the 1 and the n in
the triplet forms above. Furthermore any IRR of length n of one of the types
RLL, RLR, LRL, LRR has one of these forms. Note that because the symbol
strings here are of length n having symbols at positions k such that 1 ≤ k ≤ n,
the CS’s 0 and n+ 1 are necessarily the first CS’s reached with the pointer in
positions 0 and n+1 respectively.

Generating all the IRR’s based on Theorem 9.1 of [?] starts with all single
TM steps in the above notation 1 → 0 (i.e. x → x) or 1 → 2 (i.e. x → x)
where x’s represents an arbitrary symbol that could be different for each use.
Every possible single symbol (called α) is added at the pointer position in each
RHS, and in each case the computation is taken as far as possible to get the
new RHS unless a stationary cycle occurs. The resulting rule LHS→ RHS is an
IRR if it irreducible i.e. cannot be expressed with shorter strings of symbols.
In the first case, adding α on the left and continuing the computation as far
as possible gives results either of the form (i) 2→ 1→ 3 or (ii) 2→ 1→ 0 i.e.
αx→ αx→ xx or xx respectively unless a stationary cycle is obtained. The
results in case (i) are IRR’s by Lemma ?? because there can be no other CS’s
between the 2 and the 1 which is a single TM step. The results from (ii) are
IRR’s if and only if the first move beyond the 1 is to 2 i.e. the computation has
the form 2→ 1→ 2→ 0 because this ensures that the rule 1→ 0 contained in
(ii) of length 2 is irreducible. Likewise for the mirror image case starting with
a rule of the form 1→ 2 adding the α on the right and continuing gives results
of the form 1 → 2 → 0 (∈ IRR(2)) or of the form 1 → 2 → 3 (∈ IRR(2) if
and only if the first move from the 2 is to 1).

Consider extending this to the general case of generating all the IRR Y of
length n + 1 based on the single IRR X of length n ≥ 2 and having the form

6 John Nixon

n→ 1→ n+1, which can be also be written as A→ B→ C for some CS’s A,B,
and C. First the computation Aα → Bα → Cα holds where α is any symbol
the TM uses. Clearly by Theorems 5.4 and 9.1 of [?] every such IRR Y can
be obtained starting from the LHS Bα if an appropriate α can be found. The
symbol α must be chosen so that Bα is reachable i.e. O1(Bα) ̸= ∅. These are
all the terminal CS’s of length n + 1 from the backward searching algorithm
starting from Bα and ending in condition (1). Each of these branches has a
point where the pointer first reaches n and this CS is Aα because the α has
yet played no part, so O1(Bα) = O1(Aα), thus the backward search algorithm
is applied to Aα, and identifying all possible values of α i.e. the values of α
for which O1(Aα) ̸= ∅ by generating all its origins for each such α. Also the
forward computation from Cα is continued as far as possible to generate the
RHS of Y and hence what its type is (LRR, LRL, RLR, RLL, LRC, or RLC)
the last two cases coming from a stationary cycle in the forward computation
from Cα.

If the pointer is at the left in A and C and the right in B (the mirror image
case) the added arbitrary symbol α will be on the left. This procedure for
generating the all the IRR Y of length n+ 1 like this from an IRR X of length
n, including the mirror image case where the triplet form of X is 1 → n → 0,
will denoted by the function F. F applied to an IRR of type LC or RC is the
empty set. This proves that

Theorem 2.2. Every member of IRR(n + 1) can be obtained using F from
some X ∈ IRR(n) of type RLR or LRL for n ≥ 2. Also, because forward
computation is unique e.g. the RHS of an IRR is uniquely determined by is
LHS, but the origins may be more than one, the sets of IRR obtained like
this for different X (different B) must be disjoint i.e. F−1 applied to a member
of IRR(n + 1) is a unique member of IRR(n). The first part can be written
symbolically as

IRR(n + 1) =
⋃

X∈IRR(n)

{F(X)} (1)

The following is the general outline showing an IRR triplet of length n
of type RLR (type RLR with origin having the pointer at the right) and the
possible types of result (except the cases where a stationary cycle occurs) of
this argument for a given symbol α (added on the right) that could include a
new IRR triplet of length n + 1.

Cannot be used to
prove reachability of 1

1 →

Proves reachability of 1 n+ 1→

n→ 1→ n+ 1

{
→ 0 type RLL
→ n+ 2 type RLR

(2)
The 3 central CS’s refer to a member of IRR(n), and the leftmost, central, and
rightmost CS’s refer to the corresponding member of IRR(n+1) if reachability

Developments in the analysis techniques for non-terminating Turing Machines 7

of the CS 1 in the centre of (??) is found. The corresponding mirror image
result for the LRL case is as follows:

Proves reachability of n+ 1 1 →
Cannot be used to prove
reachability of n+ 1

n+ 1→

2→ n+1→ 1

{
→ 0 type LRL
→ n+ 2 type LRR

(3)
In this case note that because the α is added on the left, all the pointer
positions in the IRR of length n have been increased by 1 when they appear in
the embedded IRR of length n, so originally they would have been 1→ n→ 0.
The above procedure allows the generation of all the IRR of a TM up to any
given length and has been implemented [?].

Because the middle element of an IRR X (A → B → C) only has a single
symbol added when doing F, its inverse can be described as follows for the case
that the IRR has type LRL. Take the middle element and remove its leftmost
symbol giving B∗, then trace the computation both back to find the first CS
with the pointer at position 2 giving A∗, and forward to get the first CS with
the pointer at position 1 giving C∗. This ensures that A∗ → B∗ → C∗ satisfies
Lemma ??. Then F−1(X) = A∗ → B∗ → C∗ and similarly for IRR’s of type RLR.
If only the origin and RHS of X is given as when an IRR pattern is provided,
first an LHS must be found such that Lemma ?? holds.

3 Introducing IRR patterns (IRRP’s) and IRR

generating rules (IGR’s)

The derivation of IRR’s from other ones (length n) following the procedure
F described above was found to often take the same form independent of n
provided n is large enough. Then the obvious step is to describe these general
results termed IRR generating rules (IGR’s) so that they can be easily applied
in any given case. These results have an LHS, the symbol α used in the
derivation F, and an RHS that can match IRR’s, and the existence of a member
of IRR(n) matching the LHS implies the existence of a corresponding member
of IRR(n+1) matching the RHS (or each of the parts of the RHS where there
are more than one of them). The matching implies fixing the arbitrary strings
T1 and T2. The general notation for an IGR is LHS

α⇒ {set of RHS’s}. Each of
these RHS’s and the LHS take the form of a generalised IRR (an IRRP or IRR
pattern) in which two arbitrary strings appear, T1 in the origin and T2 in the
RHS (of the IRRP), and the LHS (middle member of the IRRP) is omitted so
that any LHS (of the IRRP) is matched.

The analysis techniques were initially applied to the following TM (??)
which was generated randomly with 5 states and 5 symbols. This TM, being
much larger than any that I have analysed before, has proved to be a much

8 John Nixon

more challenging case.

1a→ 2 d 2a→ 1c 3a→ 4c 4a→ 3 b 5a→ 2 e

1b→ 4 d 2b→ 4 c 3b→ 4 c 4b→ 4b 5b→ 3 e

1c→ 3 a 2c→ 1d 3c→ 2 a 4c→ 3c 5c→ 3a

1d→ 2b 2d→ 1a 3d→ 5 c 4d→ 5 c 5d→ 4 a

1e→ 2b 2e→ 3 c 3e→ 3b 4e→ 5a 5e→ 3a

(4)

For example it is known that at least one IRR for this TM matches

1daT1 →→ 4 caT2. (5)

Using backward TM steps from (??) gives

deriving the origin old RHS RHS α
αA αC

1αdaT1


α=a← 2ddaT1
α=c← 2adaT1
α=d← 2cdaT1

4acaT2
4ccaT2
4dcaT2

3 bcaT2
1abcT2
5 ccaT2

a

c

d

(6)

of which the result for α = c has an RHS given where the pointer is at the
first symbol of T2. The results of F are written as follows

2ddaT1 →→ 3 bcaT2
2adaT1 →→ 1abcT2
2cdaT1 →→ 5 ccaT2

(7)

for α = a, c, d respectively, and the complete IGR can be written as

1daT1 →→ 4 caT2


a⇒ 2ddaT1 →→ 3 bcaT2
c⇒ 2adaT1 →→ 1abcT2
d⇒ 2cdaT1 →→ 5 ccaT2

(8)

Note that in this argument, adding the arbitrary symbol α on the left
(because the pointer in the origin is on the left) maintains the pointer being
on the right hand end of the string of symbols in the LHS (not shown), and this
property is implicit in an IRRP with the pointer at the left of the origin CS.
The result of this argument is that if an IRR of length n conforms to (??), then
there are 3 more IRR’s of length n + 1 corresponding to (??) for α ∈ {a, c, d}
respectively. The second of these results in (??) has the pointer in the RHS on
the right, so this IRR has type LRR and cannot be used to derive other IRR’s.
These are examples of rules that generate IRR’s of length n + 1 from other
IRR’s of length n. An IGR is defined as a logical implication having an IRRP
on the left and sets of IRRP’s on the right, one set for each value of α and the

Developments in the analysis techniques for non-terminating Turing Machines 9

logical deduction follows the general procedure outlined in Theorem ??. Thus
the strings with given symbols on the right of the implications are one symbol
longer than those on the left.

To illustrate how an IRR can be derived from a member of IRR(2) and
a sequence of IGR’s, consider the following IRR of length 6 that was chosen
from the computer program output and represented in Origin→ LHS→ RHS
format as follows:

3aecccb→ 1cadbdb→ 2dbdbdb . (9)

The derivation of the first rule of (??) in single TM steps is

3aecccb

4cecccb

5cacccb

3caaccb

2caaacb

1cacacb

2cacdcb

1caddcb

2cadbcb

1cadbdb

. (10)

Each time the pointer moves to where it has not been before while going back-
wards from the LHS, the derivation (??) generates IRR’s as follows, followed
by (??) in triplet and the abbreviated notation:

2cb→ 1db→ 5 cd ∈ IRR(2)
1dcb→ 1bdb→ 3 ecd ∈ IRR(3)
2cdcb→ 1dbdb→ 5 cecd ∈ IRR(4)
4ecccb→ 1adbdb→ 2 ececd ∈ IRR(5)

2cb→→ 5 cd

1dcb→→ 3 ecd

2cdcb→→ 5 cecd

4ecccb→→ 2 ececd

. (11)

This splitting up of the derivation of (??) results from the repeated application
of F to (??).1. The abbreviated forms in (??) can be obtained by applying in
order the following results to the first of these IRR’s 2cb→→ 5 cd.

10 John Nixon

2T1 →→ 5 T2
b⇒ 1dT1
1eT1

}
→→ 3 eT2

1T1 →→ 3 T2


a⇒ 2dT1 →→ 4cT2
c⇒ 2aT1 →→ 2 aT2
d⇒ 2cT1 →→ 5 cT2

2cdT1 →→ 5 T2
a⇒

4eccT1
4eecT1
5cadT1
5eadT1

→→ 2 eT2

4T1 →→ 2 eT2
c⇒ 3aT1
4bT1

}
→→ 2dbT2

. (12)

For the initial steps in the derivation of (??), the following sub-cases of
successive members of (??) need to be applied in this order: 1, 3, 1, 1.

Equation (??) contains examples of IGR’s which allow one IRR to be de-
rived from another by substituting for the T1 and T2 as the example shows,
and express the application of the function F in Theorem ?? in a simpler form.
The IGR’s have two lengths, one associated with T1 and one associated with T2
and these are defined as the lengths of the corresponding strings on the RHS
of the IGR thus for example the lengths of the IGR’s in (??) will be denoted
by (1, 1), (1, 1), (3, 1), (1, 2) respectively. The equations (??) are in the shortest
forms possible as can be verified from their derivations.

The symbols above the implication signs are the symbol added next to the
pointer in the origin (α) in the derivation of the IRR’s from other ones as
described in Section ??, and are the first 4 symbols of the LHS of IRR (??)
taken in reverse order. The results on the right in (??) are all the results that
can be derived from their LHS for that value of α and that length, though the
third example is quite complicated and has other values of α ie. b and c with
different lengths of results.

The IRRP on the RHS of the last member of (??) is of type LRR and can
be seen to not generate a new IRR directly. Applying the last member of (??)
to the last IRR of (??) gives the initial result

3aecccb→ 1cadbdb→ 2dbcecd (13)

which is not an IRR. Taking this computation as far a possible has to be an
IRR (in this case having non-extendable type LRR) which is

3aecccb→→ 2dbdbdb (14)

and has α = c and is in agreement with (??). The derivations of (??) and (??)
illustrate the general procedure for deriving any IRR by repeated applications
of F i.e. applying a sequence of IGR’s starting from a member of IRR(2).

Developments in the analysis techniques for non-terminating Turing Machines 11

This example suggests that if all the IGR’s needed to generate the IRR(n+
1) from IRR(n) were obtained, these could have lengths much less than n + 1
and be fewer in number than the IRR(n + 1), and this might give a more
compact way to represent the action of the TM. This will be followed up later,
but many details need to be given first.

Every IGR represents the process of deriving a member of IRR(n + 1)
from a member of IRR(n). Therefore every such IGR can be obtained from
another IGR (representing the process for deriving the member of IRR(n)
from a member of IRR(n − 1)) by an appropriate specialisation by adding the
context symbols, applying F, then removing any redundant symbols as before.
But the number of such context symbols needed seems to be unlimited.

4 General definitions of F and IGR’s

The general form of the derivation of an IRR from an existing one (F) can be
expressed in detail as follows. Start with the IRR pattern (IRRP) of type LRL

t1y1 . . . ynT1 →→ t2 z1 . . . znT2 (15)

in which T1 and T2 have been omitted for brevity in much of this section. Here
n ≥ 2 and the t’s are machine states and y’s and z’s are symbols.

Then proceed with F i.e. add the symbol α to both sides where the pointer
is in the RHS then the backward search gives the following types of results (ex-
cluding the stationary cycles) which can be classified according to the rightmost
position j1 of the pointer relative to the symbol y1

t1αy1 . . . yn ←


t′1α

′y1 . . . yn for j1 = 0

t′1α
′y′1 . . . y

′
j1+1yj1+2 . . . yn for 1 ≤ j1 ≤ n − 2

t′1αy
′
1 . . . y

′
n−1y

′
n for j1 = n − 1

(16)

where the primes indicate a possible change in the symbol or state by the TM.
For the case n = 1, j1 must be 0. Note that the form t′1α

′y′1y2 . . . yn cannot
arise because a single backward step to the right followed by two backward
steps to the left could possibly alter y1 and y2 whereas a single backward step
to the left has j1= 0 as above.

The point of the classification is to enumerate all the different types of
case that can arise after all the symbols that cannot be altered because the
pointer does not reach there in the derivation, are abstracted out. They are
not mentioned explicitly and they form part of an arbitrary string (in this case
T1). The last reverse computation step in the last case giving j1 = n−1 cannot
not lead to a new IRR because this path and the CS reached does not imply
the reachability of the LHS and so does not generate an IRR. If the LHS is

12 John Nixon

reachable it must be because there is another origin with j1 < n−1. Therefore
this case must be omitted for the purpose of generating IGR’s, so j1 can be
restricted to the range 0 ≤ j1 ≤ n − 2.

Similarly, for the computation of the new RHS, the results can be classified
(again excluding stationary cycles) by the rightmost position j2 of the pointer.
So that this parameter also starts at 0, the pointer starts at position 0 at α
and ends at position -1 if it goes left and ends at position n +1 if it goes right
giving the possibilities

t2αz1 . . . zn →

{
t′2 α′z′1 . . . z

′
j2
zj2+1 . . . zn where 0 ≤ j2 ≤ n or

t′2α
′z′1 . . . z

′
n if j2 = n + 1

. (17)

This works whenever n ≥ 1.
If a stationary cycle occurred in (??) it would be noted, but it would have

no effect on the general form of the possible reverse search results. Because
t1αy1 . . . yn is in the closed circuit (to avoid a branch point in the forward
computation implying it is not unique) the derived IRR would have type RC
i.e. a stationary cycle occurs in the result of (??).

The minimum number of symbols needed for the representation of (??) is
easily seen to be

r1 =

{
1 for j1 = 0
j1 + 2 otherwise

(18)

provided 0 ≤ j1 ≤ n − 2. Similarly, the minimum number of symbols needed
for the representation of the result of (??) is

r2 = min(j2 + 1, n + 1). (19)

The length of an IGR consists of the pair (r1, r2).
From (??) and (??), because F only applies to an IRR of extendable type,

i.e. type LRL in this case, and because RCS’s resulting from the backward
search going to the opposite end of the string from α are excluded from the
LHS’s of IGR’s, and excluding the cycling cases described above, the remaining
four combinations can be summarised as

t1y1 . . . ynT1 →→ t2 z1 . . . znT2
α⇒{

t′1α
′T1 j1 = 0

t′1α
′y′1 . . . y

′
j1+1T1 1 ≤ j1 ≤ n − 2

}
→→

{
t′2 α′z′1 . . . z

′
j2
T2 0 ≤ j2 ≤ n

t′2α
′z′1 . . . z

′
nT2 j2 = n + 1

}.
(20)

In this statement the top and bottom parts on the left of→→ can be combined
independently with the top and bottom parts on the right of →→ i.e. there are
four combinations possible. Of these the distinctions on the left of →→ do not
change the type of the new IRR, this being respectively LRL and LRR for the
top and bottom parts on the right of →→. The IRR’s are also distinguished

Developments in the analysis techniques for non-terminating Turing Machines 13

by different pairs (j1, j2). The type of an IGR is defined as the type of the IRR
that it generates i.e. the type of its RHS. These together with their left-right
reversed forms are all the different types of IGR’s possible.

The corresponding right-left reversed results starting from an IRRP of type
RLR also involve the parameters j1 and j2 obtained similarly but counting
leftwards. Thus starting from

t1yn . . . y1 →→ t2zn . . . z1 (21)

likewise the following types of results are obtained which can be classified
according to the leftmost position relative to y1, (j1) of the pointer. This
satisfies 0 ≤ j1 ≤ n − 1 and gives the following:

t1yn . . . y1α←


t′1yn . . . y1α

′ for j1 = 0

t′1yn . . . yj1+2y
′
j1+1 . . . y

′
1α
′ for 1 ≤ j1 ≤ n − 2

t′1y
′
ny
′
n−1 . . . y

′
1α for j1 = n − 1

(22)

Naturally, (??) and (??) and are still valid and all the types of result in (??)
have corresponding mirror image forms.

Simple examples of these are in (??), and (??) and (??) indicate the general
method for deriving them which is as follows. After the symbol α has been
added to the origins on the left, reverse steps of the TM are made recursively,
making sure that all possible reverse steps at each stage are done and stopping
only when further reverse steps are impossible without the knowledge of what
the strings T1 and T2 are, as described in Section ??.

These types of result in (??) are expressed with the shortest strings of
symbols possible (i.e. the y’s and z’s). The strings T1 and T2 being arbitrary,
so can be replaced by any strings. They do not have to have the same length.
Thus an IGR is defined to have no redundant symbols where the pointer does
not reach during its derivation. This is analogous to IRR’s being irreducible.
In the derivation of the IGR from an IRR of length n, the backward search to
obtain the new origins and in the forward computation to obtain the new RHS,
the pointer can obviously never move outside the strings of lengths r1 and r2
introduced above except for the last TM step in the forward computation. In
addition all these positions of the pointer are reached during the derivation,
the string of length r1 for the derivation of a new origin and the string of length
r2 for the derivation of the new RHS.

If the pointer ends up at one end of the string T2 (indicated by T2), the
pointer position is clear from the context. The pair of strings of symbols
(T1, T2) of lengths (n + 1 − r1, n + 1 − r2) respectively in (??) that are not
passed by the pointer during the derivation of an IGR from an IRR of length
n that is the basis of its LHS will be removed and listed as “context pairs” so

14 John Nixon

that the result is presented in its minimal form i.e. as an IGR in computer
output.

A IGR could be defined to include all the possible results that can be
derived for any possible value of α (an IGR member), i.e. all the possible
origins for each α, but if there is not likely to be confusion I will refer to such
statements as IGR’s as was done above. Thus an IGR would be the union over
α of the IGR members. An IGR member has the form (IRRP,α) ⇒ set of
IRRP’s, so the above results in (??) could be described as IGR members. Thus
it would be possible for different RHS’s of the IGR to have different values of
(r1, r2) corresponding to different values of α, but these will be separated into
different IGR’s in the computer output.

Here F was defined as applied to an IRR pattern. When F is applied to an
IGR or sequence of IGR’s X, it is applied to the IRR pattern which is the RHS
of X, so the RHS of X becomes the LHS of the new IGR Y derived from it by
F. This shows that F derives from an IGR or a sequence of IGR’s X, another
IGR Y such that X · Y is a sequence of IGR’s.

4.1 Computer representation and algorithms

There can be a problem that occurs in the computer representation of the
IGR’s after the context strings have been separated out, which is to determine
whether the original IRRP on its left is of type LRL or RLR. Provided n > 1, it
is not immediately obvious which is the case because the pointer positions and
the parameter j1 can be counted going either way, for example compare (??)
with (??). The way it works is that a CS in the computer program output is
represented as CS(t, p, l, string) where t is the machine state, p is the pointer
position counted from the left and is one for the symbol on the left, and is 0
for the position just to the left of this symbol, and is l+1 for the position just
to the right of the string, where l = n is the length of the string. The string
is spelled out inside quote marks in printed output. After the context strings
have been split out of the derived IGR, the pointer position in the origin of
the IRRP set on the LHS of (??) is 1 by convention if the original IRRP (see
(??)) (the LHS of the new IGR) was of type LRL or LRR because the pointer
starts at 1 and is not affected by the truncation of the symbols from the right.
If the original IRRP was of type RLR or RLL, the pointer position in its origin
(LHS of (??)) is initially by convention at n (i.e. the right hand end) and is
reduced as a result of splitting out the context symbols. This for j1 = 0 is
position n minus the length of the string of symbols removed also n i.e. 0, and
is n minus the length of yn . . . yj1+2 otherwise, which is j1 + 1. This value can
never be 1, so

j1 = 1 is characteristic of the original IGR being of type LRL. This implies
that the value p = 1 in an origin CS on the LHS of an IGR in computer output

Developments in the analysis techniques for non-terminating Turing Machines 15

indicates that the context strings (T1 and T2) are added on the right, and on
the left otherwise.

For the case n = 1 this is obvious from the RHS of the IRRP on the LHS
of the IGR which is of the form t2 z1 or t2z1 according to whether the IGR
is of type LRL or RLR respectively. This shows that this obvious convention
for defining the pointer positions in the different cases distinguishes the LRL,
LRR from the RLR, RLL types of IGR.

The above argument shows, when combined with Theorem ??, that
(1) every IRR of length n + 1 of type LRL can be derived by F from another
IRR of length n of type LRL by an IGR with parameters (r1, r2) of type (??).1
(LRL (??)) in satisfying 1 ≤ r1 ≤ n and 1 ≤ r2 ≤ n + 1 as described and
(2) every IRR of length n + 1 of type LRR can be derived by F from another
IRR of length n of type LRL by an IGR of type (??).2 (LRR in (??)) (with
parameters r1 and r2 such that 1 ≤ r1 ≤ n and r2 = n + 1.

These can be applied recursively to show that

Theorem 4.1. any extendable IRR (type LRL or RLR) of length ≥ 3
can be obtained from a member of IRR(2) by a sequence of substitutions of
IGR’s as described here under case (1). Any non-extendable IRR (type RLL
or LRR) can be obtained from a member of IRR(2) by the above substitutions
(0 or more) followed by a single substitution step under case (2).

This theorem is illustrated by the example at the beginning of this section.
This suggests the obvious process for generating the set of all the IGR’s could
start as follows after finding all the members of IRR(2). Essentially this was
the method used in the latest version of the program [?] to generate Table ??.

• Find all the members of IRR(2) and the IGR’s used to generate them
from the single TM steps.

• Likewise the IRR(3) can be obtained from the IRR(2) and the IGR’s
summarising this can be added while not duplicating any IGR’s already
found etc..

• This can be repeated to generate up to the IRR(n).

After a while hopefully to generate the IRR(n + 1) from the IRR(n) will not
require any IGR’s that have not already been obtained for n sufficiently large.

The following example was studied because the results from (??) became

16 John Nixon

very complicated.
1a→ 2b

1b→ 3 b

1c→ 1b

2a→ 3b

2b→ 2c

2c→ 1 c

3a→ 1 a

3b→ 1 a

3c→ 3c

(23)

The results for the IGR’s from TM ?? were as follows in Table ?? giving the
maximum length of the computation rules as 10.

Developments in the analysis techniques for non-terminating Turing Machines 17

Table 1: IGR’s generated by the computer program

1 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2

2 1caT1 →→ 1 T2
b⇒ 2aca
2acb

}
T1 →→ 3 bT2

3 1caaT1 →→ 1 T2
b⇒ 1abaa
1abab

}
T1 →→ 3 bT2

4 1cababT1 →→ 1 T2
b⇒ 1abbccbT1 →→ 3 bT2

5 1cababcT1 →→ 1 T2
b⇒ 1abbccacT1 →→ 3 bT2

6 1cabcT1 →→ 1 T2
b⇒ 2accac
2accbc

}
T1 →→ 3 bT2

7 1ccT1 →→ 1 T2
b⇒ 1abcT1 →→ 3 bT2

8 2T1 →→ 1 T2
b⇒ 1aT1 →→ 3 bT2

9 3T1 →→ 1 T2
b⇒ 2aT1 →→ 3 bT2

10 3T1 →→ 1 aT2
c⇒ 3cT1 →→ 2bbT2

11 1ccT1 →→ 1 ababT2
c⇒ 2bbcT1 →→ 3bbbbbT2

12 1caT1 →→ 1 ababaT2
c⇒ 3cca
3ccb

}
T1 →→ 3 bababaT2

13 1caaT1 →→ 1 ababaT2
c⇒ 2bbaa
2bbab

}
T1 →→ 3 bababaT2

14 1cababT1 →→ 1 ababaT2
c⇒ 2bbbccbT1 →→ 3 bababaT2

15 1cababcT1 →→ 1 ababaT2
c⇒ 2bbbccacT1 →→ 3 bababaT2

16 1cabcT1 →→ 1 ababaT2
c⇒ 3cccac
3cccbc

}
T1 →→ 3 bababaT2

17 1ccT1 →→ 1 ababaT2
c⇒ 2bbcT1 →→ 3 bababaT2

18 2T1 →→ 1 ababaT2
c⇒ 2bT1 →→ 3 bababaT2

19 1ccT1 →→ 1 ababcT2
c⇒ 2bbcT1 →→ 3bbbbbcT2

20 1caT1 →→ 1 abcT2
c⇒ 3cca
3ccb

}
T1 →→ 1bbbbT2

21 2T1 →→ 1 cT2
c⇒ 2bT1 →→ 1bbT2

22 1T1 →→ 3 T2
b⇒ 1cT1 →→ 1 aT2

23 1caT1 →→ 3 T2
b⇒ 2aca
2acb

}
T1 →→ 1 aT2

24 1caaT1 →→ 3 T2
b⇒ 1abaa
1abab

}
T1 →→ 1 aT2

25 1cababT1 →→ 3 T2
b⇒ 1abbccbT1 →→ 1 aT2

26 1cababcT1 →→ 3 T2
b⇒ 1abbccacT1 →→ 1 aT2

27 1cabcT1 →→ 3 T2
b⇒ 2accac
2accbc

}
T1 →→ 1 aT2

28 1ccT1 →→ 3 T2
b⇒ 1abcT1 →→ 1 aT2

29 2T1 →→ 3 T2
b⇒ 1aT1 →→ 1 aT2

30 3T1 →→ 3 T2
b⇒ 2aT1 →→ 1 aT2

31 2T1 →→ 3 baT2
c⇒ 2bT1 →→ 3bbbT2

32 1caT1 →→ 3 babT2
c⇒ 3cca
3ccb

}
T1 →→ 3 babaT2

33 1caaT1 →→ 3 babT2
c⇒ 2bbaa
2bbab

}
T1 →→ 3 babaT2

34 1cababT1 →→ 3 babT2
c⇒ 2bbbccbT1 →→ 3 babaT2

18 John Nixon

35 1cababcT1 →→ 3 babT2
c⇒ 2bbbccacT1 →→ 3 babaT2

36 1cabcT1 →→ 3 babT2
c⇒ 3cccac
3cccbc

}
T1 →→ 3 babaT2

37 1ccT1 →→ 3 babT2
c⇒ 2bbcT1 →→ 3 babaT2

38 2T1 →→ 3 babT2
c⇒ 2bT1 →→ 3 babaT2

39 3T1 →→ 3 babT2
c⇒ 3cT1 →→ 3 babaT2

40 1T1 →→ 1T2

 a⇒ 3T1a
3T1b

}
→→ 2T2b

c⇒ 2T1c→→ 1T2b

41 1T1 →→ 2T2
a⇒ 3T1a
3T1b

}
→→ 3T2b

42 3T1 →→ 2T2
b⇒ 1T1b→→ 2T2c

43 1T1 →→ 3T2
c⇒ 2T1c→→ 3T2c

44 3T1bbb→→ 3T2
c⇒ 2T1aabc
2T1abbc

}
→→ 3T2c

45 1T1 →→ 2T2b
c⇒ 2T1c→→ 3T2bc

46 1T1 →→ 2T2c
c⇒ 2T1c→→ 1T2bb

47 3T1 →→ 3T2c
b⇒ 1T1b→→ 2T2bb

48 1T1 →→ 2T2bb
c⇒ 2T1c→→ 1T2abc

49 3T1 →→ 3T2bb
b⇒ 1T1b→→ 1T2aba

50 3T1 →→ 3T2cb
b⇒ 1T1b→→ 3T2bbb

51 3T1bbb→→ 3T2cb
a⇒
3T1aaba
3T1abba
3T1aabb
3T1abbb

→→ 3T2bbb

52 3T1 →→ 3T2bbb
b⇒ 1T1b→→ 3T2baba

53 1T1 →→ 3T2bbbbb
a⇒ 3T1a
3T1b

}
→→ 3T2bababa

54 3T1 →→ 3T2bbbbb
b⇒ 1T1b→→ 3T2bababa

55 3T1bbb→→ 3T2bbbbb
a⇒
3T1aaba
3T1abba
3T1aabb
3T1abbb

→→ 3T2bababa

Theorem ?? demonstrates the importance of derivations of IRR’s using
chains of IGR’s substituted into each other. Connected with this is the relation
‘can be followed by’ which restricts the possible sequences of substitutions of
IGR’s. This is given in Table ?? and requires a match on the LHS and on the
RHS in which the machine state and the symbol strings must match, as well
as the direction for adding α, and the first IGR must be of extendable type i.e.
it must generate IRR’s of type LRL or RLR. On the RHS of Table ?? (to the
right of →) all parts and sub-parts of an IGR referenced are included. Every
IGR on the left of → can be followed by any IGR on the right of → in the
same row.

In Table ?? and later in the paper, the IGR’s from TM ?? will be named
by the numbers in Table ??. A part or a sub-part of an IGR will be referred
to by following that number by a letter that refers to the part of the IGR
associated with that letter which is the symbol above ⇒ i.e. the symbol

Developments in the analysis techniques for non-terminating Turing Machines 19

called α, possibly followed again by a number that determines the position of
the CS in the list of CS’s comprising the origin of the RHS of the IGR. For
example the IGR 1T1 →→ 1T2

a⇒ 3T1b→→ 2T2b is IGR 40a2.

Table 2: The relation ‘can be followed by’

1→ 22, 23, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 37
3b1, 3b2, 4, 5, 7, 8→ 22

2b1, 2b2, 6b1, 6b2, 9, 13c1, 13c2, 14, 15,
17, 18, 33c1, 33c2, 34, 35, 37, 38

}
→ 29, 31, 38

12c1, 12c2, 16c1, 16c2, 36c1, 36c2, 39→ 30, 39
22→ 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 18, 19
23b1, 23b2, 27b1, 27b2, 30→ 8, 18
24b1, 24b2, 25, 26, 28, 29→ 1
32c1, 32c2→ 29, 38
40a1, 40a2→ 42
41a1→ 49, 50, 52, 54
41a2→ 44, 49, 50, 51, 52, 54, 55
42→ 41, 46
47→ 41, 45, 48
50→ 43, 53
51a1, 51a2, 51a3→ 49, 52, 54
51a4→ 44, 49, 52, 54, 55

By examining these IGR’s in Table ?? and the compatibility relations in
Table ?? the following facts become evident:

1. There are a relatively small number of distinct origins of the LHS’s of
these IGR’s. Each of these together with the value of α necessarily gives
rise to the same origin of the RHS of the IGR regardless of the RHS of
the LHS of the IGR. For example 1caT1 with α = b is always associated

with
2aca

2acb

}
T1 in IGR’s 2 and 23. Thus the presentation in Table ?? is

far from optimal.

2. The left and right hand halves of the RHS of each IGR can be derived
independently (it is only α that connects them).

3. IGR’s can be chained together by · using substitutions for the arbitrary
strings T1 and T2.

4. Sequence restrictions other than those coming from Table ?? may result
from the way in which the sequences of substitutions operate.

5. By carrying out F to the RHS of an IGR, it is sometimes possible to
deduce that no previous IGR’s to a sequence of them can affect which
IGR’s can follow the sequence.

6. If by carrying out F to any sequence of IGR’s to find which IGR’s can
be next in the sequence, there always results IGR’s that have already
been listed, then it would show that the set of IGR’s found is sufficient
to generate all the IRR’s for the TM.

20 John Nixon

7. The starting points of these chains of IGR’s to generate all the IRR’s
must be the IGR’s involved in the IRR(2) together with their associated
contexts. These are given in Table ??.

Table 3: The IGR’s and contexts that give on their RHS’s all the IRR(2)

IGR Set of context pairs
41 (a, b)
22 (b, b)
40 (c, b)
8 (c, c)
9 (a, a), (b, a)
47 (c,)
45 (a,)
21 (c,)
10 (b,), (a,)

Exploring sequences of IGR’s chained together with · and applying F to
them to generate new IGR’s, was started beginning with IGR 22 because from
Table ??, IGR 22 clearly plays an important role. Applying F to IGR 22 in the
usual way, doing the backward search stopping whenever the pointer gets to an

end or next to an arbitrary string gives 1αcT1
b← 1ccT1 and 1baT2 → 3 baT2

so 1cT1 →→ 1 aT2
b⇒ 1ccT1 →→ 3 baT2. Removing the symbols that are not

used gives the shortest form (the IGR produced) as 1T1 →→ 1 T2
b⇒ 1aT1 →→

3 bT2 which is IGR 1. Coincidentally, IGR 1 is the only IGR that can precede
IGR 22.

Next consider IGR 1 followed by IGR 22 denoted by 1 ·22. In general fewer
possibilities will result for the IGR’s produced by F compared with F applied to

22 alone. The sequence of IGR’s 1 · 22 is 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2

b⇒
1ccT1 →→ 1 abT2 obtained by substituting cT1 for T1 and bT2 for T2 in IGR
22. The result of this is a composite IGR. By trying to apply F to this general
form, results dependent on the arbitrary strings T1 and T2 will be produced.
This starts by considering what CS’s can lead to 1αccT1 for any symbol α. It
is easy to see that

1αccT1

{
α=b← 1cccT1
← 2αccT1

. (24)

in one TM step in either case. The first of these will lead to the IRRP
1cccT1 →→ 3 babT2 because 1babT2 → 3 babT2. The strings ccT1 and abT2
are not changed because the pointer does not enter them in the derivation of

the IRRP, so the IGR used is 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2 i.e. IGR 1 in

Table ??. This same result has been obtained because it is the special case of
the above result where the first symbols of T1 and T2 are c and b respectively.

Developments in the analysis techniques for non-terminating Turing Machines 21

The second result of (??) has reached condition 2 in the backward search if
T1 is the empty string, so the the backward search cannot be continued further
in that case.

If T1 is not the empty string, the general reasoning indicates that T1 needs
to be specialised further by prepending the sequence of IGR’s 1·22 with others,
however the backward search can be logically continued giving

2αccT1 ← 2αbcT1

{
α=b← 1abcT1
α=c← 2bbcT1

(25)

which is independent of T1 because the first of these reverse steps from 2αccT1
cannot lead to any other result than the one indicated (because there is no
TM step ending in 2 β no matter what the symbol β in T1 is). This shows
that if T1 is not the empty string, the result will always be that condition 1
is reached, giving another IGR. However this is an exceptional case, and the
general method used for doing F to IRR’s will be followed i.e. whenever the
pointer reaches next to an arbitrary string the computation will stop, thus in
this case only one IGR is generated together with an RCS. This makes the
general procedure less complicated.

Returning to the general argument, taking a further step back in the se-
quence of IGR’s to be considered gives 22 · 1 · 22. This sequence gives

1T1 →→ 3 T2
22⇒ 1cT1 →→ 1 aT2

1·22⇒ 1cccT1 →→ 1 abaT2 (26)

the second part of which comes from 1 · 22 above. The symbols above the
symbols ⇒ respectively indicate IGR 22 (with α = b) and as above 1 · 22
(with two steps of IGR’s with α = b). Applying F to this starts by the
backward search from 1αcccT1 giving (e.g. using (??) which was used one
step later than when it was obtained) the following

1αcccT1


b← 1ccccT1

← 2αcccT1 ← 2αbccT1

{
b← 1abccT1
c← 2bbccT1

. (27)

Combining this with 1babaT2 → 3 babaT2 and 1cabaT2 → 3bbcbT2 and ab-
sorbing any unchanged symbols into T1 or T2 because the pointer has not
reached them gives the results 1 again, IGR 7 and

1ccT1 →→ 1 abaT2
c⇒ 2bbcT1 →→ 3bbcbT2. (28)

which is not in Table ??. Actually IGR 17 is a special case of IGR 11 which
is itself a special case of (??) (only on the LHS’s), formed by successively
decreasing the length of a string in the RHS by 1. Because in these three
cases, IGR 17 uniquely has the pointer finishing at the α end of the string in

22 John Nixon

RHS of the RHS, such a result as IGR 17 cannot be continued by specialising
T2 and continuing the computation to the end in the RHS, so IGR 17 is in
some sense a completion of (??) and IGR 11.

In (??) because of the absence of a branch of the backward search taking
the pointer to the opposite end of the string from α i.e. there are no RCS’s,
any special cases of T1 that would result from prior IGR’s in the sequence could
not affect the new origins of IGR’s that could be next in the sequence, only
the RHS’s could vary. This is because the general form of the derivation of a
new origin follows the pattern in (??) whatever substitutes for T1. Because 1

can also be preceded by 24b1, 24b2, 25, 26, 28, 29, these cases could now be
considered in turn preceding 1 · 22.

What has started to be explored above is that there could be an alternative
algorithm to generate the IGR’s directly from each other by applying F in these
general cases for arbitrary strings T1 and T2 starting from the IGR’s needed
to derive the IRR(2) from the single TM steps. This is extremely complicated
because of dealing with new origins and RHS’s together, and there are a lot of
different cases that can arise by applying F to sequences of IGR’s determined
by using the relation ‘can be followed by’ in Table ??. Further attempts was
made to do this. However this did not work well, because as above IGR’s not
in (??) were generated, and it was not clear how much context needs to be
added at each stage. Also in the example above as a result of the absence
of RCS’s, the derivation of the new origins is halted but that of RHS’s is
not. This suggests treating the backward and forward derivations in IGR’s
more separately i.e. considering at first just backward searches to get the new
origins for the IGR’s. For this I introduced the new concept of LIGR (Left
IGR) because the RHS’s can presumably be filled in later just with forward
computations.

5 Introducing LIGR’s as an aid to finding the

IGR’s for a TM

The aim of this section will be to formulate this procedure precisely and to
demonstrate it and show that if it does come to an end, then the LIGR’s so
obtained from a Turing Machine can form the basis of an alternative intuitive
description of the action of the TM.

An LIGR or left IGR is the origin of the LHS of an IGR, and the origin of
the RHS of the same IGR, combined with the symbol α. For example IGR’s
2, 23 have the common LIGR

1αcaT1
α=b← 2aca

2acb

}
T1. (29)

Developments in the analysis techniques for non-terminating Turing Machines 23

Similarly

1αcaT1
α=c← 3cca

3ccb

}
T1 (30)

is common to IGR’s 12 and 20. These examples show that in common with
IGR’s, LIGR’s can have parts (labelled by α) and sub-parts that will be la-
belled in lexicographical order of the strings with the most significant symbol
(sorted first) being where the pointer is. Also the symbol α may be omitted
for brevity because it is always at the opposite end of the string from T1, which
in the context of LIGR’s will be called just T because T2 is not involved. For
example if (??) and (??) are treated as parts of the complete LIGR X then
(??) is X.b and (??) is X.c. The length of an LIGR will be the length of the
symbol string on its right, which is one more than the length of the symbol
string on the left assuming α is omitted. This notation with the reverse facing
arrow will be used because as usual the arrows (← or→) indicate the direction
of the computation of the TM as distinct from direction of logical derivation
indicated by ⇒. Thus LIGR’s are also reverse computation rules, but very
special ones because they arise in the context of IGR’s.

There are obvious advantages of treating IGR’s in this way as can be seen in
the drastically shortened list of results (12 LIGR’s from Table ?? not counting
parts and sub-parts separately). Moreover if the LHS of an LIGR matches
the origin of an IRR, F applied to this IRR has as origins the result of the
substitution for T in the RHS of the LIGR, and its RHS can be computed
directly from the RHS of the IRR using alpha of the LIGR. Thus the RHS’s
can be filled in later and do not need to be recorded in the rule (an IGR) for
generating new IRR’s from existing ones.

There is however a limitation to completely ignoring the RHS’s which is
that LIGR’s could be thought of (vacuous LIGR’s) which can never be used in
practice because they do not match any IRR’s. The consequences of this will
be followed up later in Section ??.

5.1 Associativity of composition

Underlying this is the assumption that the operation · is associative. This
is such a basic result that it might never be questioned, being regarded as
obvious. It means that for any LIGR’s L1,L2 and L3 the following is true:

(L1 · L2) · L3 = L1 · (L2 · L3) (31)

which implies that for any string of LIGR’s, the compositions can be done in
any order provided the sequence of LIGR’s is maintained e.g. L1 ·((L2 ·L3)·L4) =
(L1 · L2) · (L3 · L4). Suppose Li = xi1yi1 . . . yiriTi ← xi2y

′
i1 . . . y

′
iri+1Ti for

1 ≤ i ≤ 3 (where xi1 and xi2 are states, y and y′ with subscripts are symbols
and α is put on the left for the computations). To show this first note that the
meaning of an LIGR is that the CS on the left can be replaced by the CS on

24 John Nixon

the right regardless of the arbitrary string denoted by T or T with a subscript.
To apply an LIGR, the string T is chosen to match the given CS if possible.
If it matches, it can be replaced by the corresponding string on the right with
the same chosen substring T.

Thus the composition of the three LIGR’s written out in full as

L1 = x11y11 . . . y1r1T1 ← x12y
′
11 . . . y

′
1r1+1T1

L2 = x21y21 . . . y2r2T2 ← x22y
′
21 . . . y

′
2r2+1T2

L3 = x31y31 . . . y3r3T3 ← x32y
′
31 . . . y

′
3r3+1T3

(32)

requires the matching of L2 and L3 by choosing T2 and T3 for the given T1 such
that

x21 = x12, y21 . . . y2r2T2 = y′11 . . . y
′
1r1+1T1

x31 = x22, y31 . . . y3r3T3 = y′21 . . . y
′
2r2+1T2

(33)

Although there are 9 cases here because r2 can be greater, equal, or less than
r1+1, and likewise for r3 and r2+1, (??) is the only condition needed regardless
of the order of composition, therefore this order does not affect the result.

5.2 Sequences of LIGR’s and F

A sequence of LIGR’s is a chain of LIGR’s that can follow each other written
with · between them so for example if

L1 = 1caT
b← 2aca

2acb

}
T. (34)

L2 = 2T

{
b← 1aT
c← 2bT

(35)

L3 = 1T
b← 1cT (36)

then
L1.2 = 1caT

b← 2acbT

L2.1 = 2T
b← 1aT

(37)

and the chain L1.2 · L2.1 · L3 is the the result of the three substitutions of the
LHS performed in that sequence giving

1caT← 2acbT← 1aacbT← 1caacbT (38)

so the combination is 1caT
bbb← 1caacbT.

Similarly to the way in which F was applied to IGR’s, this can obviously
be done for LIGR’s by just taking the origins only i.e. the parts to the left of
→→. The result of F applied to an LIGR of length 1 cannot give rise to any
residual CS’s because there is not enough “room” because there is only one

Developments in the analysis techniques for non-terminating Turing Machines 25

possible reverse TM step to α for example with L2.1, applying F starts with

1αaT
α=b← 1caT and after absorbing the a into the arbitrary string T because it

is not involved gives 1T
b← 1cT where it unnecessary to write the α explicitly

and often the superscripted α value will not be written. The effect of applying
F to a sequence of LIGR’s can be affected by adding an extra LIGR to the
beginning of the sequence. Suppose an LIGR or a sequence of LIGR’s X1
combined as above with α is of the form (putting the α in for clarity)

s1αy1 . . . yrT1 ← s2z1 . . . zr+1T1. (39)

Likewise let X2 be

s′1α
′y′1 . . . y

′
qT2 ← s′2z

′
1 . . . z

′
q+1T2. (40)

Then for the sequence X2 · X1 to be possible requires, s′2 = s1 and y1 . . . yr is a
substring of z′1 . . . z

′
q+1 on the left. The result of X2 · X1 is

s′1αα
′y′1 . . . y

′
qT2 ← s′2αz

′
1 . . . z

′
q+1T2 =

s1αy1 . . . yrz
′
r+1 . . . z

′
q+1T2 ← s2z1 . . . zr+1z

′
r+1 . . . z

′
q+1T2.

(41)

i.e.
s′1αα

′y′1 . . . y
′
qT← s2z1 . . . zr+1z

′
r+1 . . . z

′
q+1T. (42)

Comparing (??) with (??) shows that the effect on X1 of preceding it with X2
is to add extra symbols next to T in its right hand member. Therefore the
results of the backward search starting from the RHS of (??) and shortened to
the shortest form are reproduced when started from the RHS of (??) provided
the pointer ends up at α when started from X1; these give rise to LIGR’s. In
addition there may be some extra LIGR’s resulting from the pointer reaching
the extra symbols which may be classified by the position of the rightmost
symbol reached. Crucially, this happens only when F applied to X1 leads to
cases in the backward search when the pointer ends up at the opposite end of
the string from α i.e. condition 2 is reached. These were termed residual CS’s
(RCS’s) because they are cases that do not lead directly to any more IGR’s
and LIGR’s but indicate the possibility of them if the sequence of LIGR’s to
which F is applied increases in length as a result of a preceding LIGR appended
to the sequence in question. Finally, there may be results of this where the
pointer ends up at the opposite end of the string from α i.e. the pointer goes
right when the rightmost symbol is reached, when starting from X2 · X1. These
are the new RCS’s in the result of F applied to (??) and will be designated
as F2(X2 · X1). Therefore it makes sense to introduce ∆F1 as the set of extra
LIGR’s from F, as a result of adding an extra LIGR X2 at the beginning of the
sequence where X1 = Y1 · Y2 . . . · Yn is a sequence of LIGR’s:

∆F1(X2, X1) = F1(X2 · X1) \ F1(X1). (43)

26 John Nixon

In this notation the main result of the preceding paragraph can be written as

F2(X1) = ∅ ⇒ ∆F1(X2, X1) = ∅. (44)

where the result of F applied to a sequence of LIGR’s was split into two com-
ponents F = (F1, F2) where F1 is the set of LIGR’s produced and F2 is the set
of RCS’s produced. The converse is not true because it could be that there
are some reverse search paths that go beyond the symbols in X1 but none of
them go back to α. In this case F2(X1) ̸= ∅ and ∆F1(X2, X1) = ∅. The result
of F for a collection of LIGR’s in a sequence combined with · is defined as the
result of F for the combined LIGR, which actually only depends on the its RHS
and results from applying the backward search algorithm to it. A consequence
of this is that the arguments of F can be written in different ways e.g. the
sequence of LIGR’s can be replaced by the string of symbols in the RHS of the
combined LIGR.

5.3 Evaluating (??) one extra symbol at a time

The following is a description of the above calculation taken one symbol at
a time. It can be applied when several symbols are added in one step from
a single LIGR as was the original intention, or when a sequence of LIGR’s is
added that each contribute just one symbol etc..

The result of (??) can obviously be obtained by adding each symbol one
at a time and accumulating the results for each extra symbol added. Suppose
the extra symbols added to the starting CS s2z1 · · · zr+1 from X1 as a result of
preceding it with X2 are z′r+1 . . . z

′
q+1 as in (??) then one can write:

F1(X2 · X1) = F1(s2z1 . . . zr+1z
′
r+1 . . . z

′
q+1)

= ∆F1(z
′
r+1, s2z1 . . . zr+1)∪⋃i=q+1

i=r+2 ∆F1(z
′
i, s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1) ∪ F1(s2z1 . . . zr+1)

(45)

where the union of all the ∆F1 terms is (??) and last term is F1(X1). Each
step corresponding to one term in the multiple union uses the RCS’s from
the previous step. These RCS’s with the single extra symbol are the starting
points of the continuing backward search which would of course stop if at some
point there were no more RCS’s. In more detail, in order to calculate a typical
term

∆F1(z
′
i, s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1) (46)

which is by definition

F1(s2z1 . . . zr+1z
′
r+1 . . . z

′
i) \ F1(s2z1 . . . zr+1z

′
r+1 . . . z

′
i−1), (47)

in the backward search, before ending up at α, the pointer must first reach the
symbol at z′i−1, therefore the backward search can start from there i.e.

F2(s2z1 . . . zr+1z
′
r+1 . . . z

′
i−1)z

′
i (48)

Developments in the analysis techniques for non-terminating Turing Machines 27

where the last symbol is concatenated to the RCS given. If the pointer reaches
α the result is a new LIGR otherwise it gives an RCS which is in

F2(s2z1 . . . zr+1z
′
r+1 . . . z

′
i). (49)

Putting i = r +1 initially, then this shows that the backward search starts
from F2(s2z1 . . . zr+1)z

′
r+1 i.e. the set of RCS’s from the initial backward search

for X1 each appended with the first extra symbol z′r+1 on the right. If the
pointer reaches α as the backward search continues, this gives a new LIGR
otherwise if goes to the other end it gives an RCS in F2(s2z1 . . . zr+1z

′
r+1). If

the pointer comes to a point where the backward search can go no further or
an infinite stationary loop no results are contributed. Then for i = r + 2, the
backward search starts from each of the above RCS’s appended with z′r+2 on
the right i.e. F2(s2z1 . . . zr+1z

′
r+1)z

′
r+2 and continues until either the pointer

reaches α giving a new LIGR, or away from it giving an RCS etc. until i = q+1

is reached i.e. until all the new symbols have been added and all possible
backward search paths are followed at each stage. If at any stage there are no
RCS’s in F2 it terminates. All the new LIGR’s are accumulated and any final
RCS’s are noted. Naturally, there is an equivalent version of this if α is on the
right.

6 The procedure for finding the LIGR’s for a

TM

This is extremely complicated and is very hard to describe so the reader is
not expected to understand it immediately. For this reason I attempt to do so
here in this section and then the procedure is applied to TM (??) in detail in
Section ?? when it should become clearer. It is based on the following facts:
Every LIGR is part of an IGR.
Every IGR describes the result of F applied to an IRR.
Every IRR can be generated by a sequence of applications of F to a single TM
step.
Therefore, because the backward searching on the left and the forward compu-
tations on the right are independent of each other, every LIGR is the result of
F applied to a sequence of LIGR’s combined with ·. This suggests a recursive
algorithm that uses this starting from the LIGR’s involved (the LIGR(2)) in
getting the IRR(2) from the TM steps using F. A simple example of getting
some members of LIGR(2) follows. Start from the single TM step 1a → 2b .
Because the TM moves right α is put on the right and the arbitrary strings T1
and T2 are on the left (it would be the other way round otherwise). Doing the
backward search consists of just 1 step in each case. There are two options for

28 John Nixon

α = a and one for α = c as follows:

1T1aα


a←
{
3T1aa

3T1ab
c← 2T1ac

. (50)

The forward computations are just 2T2ba → 3T2bb and 2T2bc → 3T2bc.
Putting this together as an IGR and simplifying as much as possible by redefin-
ing T1 and T2 to include all the arbitrary symbols in the strings that are not in-
volved in the computation (in this case renaming the arbitrary strings T1a as T1
and T2b and T2), gives the following for α = a: 1T1 → 2T2

a⇒ 3T1d→→ 3T2b

which is IGR 41 in Table ?? and corresponds to LIGR 7 in (??), and likewise
for α = c, after renaming the arbitrary string T1a as T1 gives the following
1T1 → 2T2b

c⇒ 2T1c→→ 3T2bc which is IGR 45 in Table ?? and corresponds
to LIGR 6 in (??). Note that for single TM steps regarded as IRR patterns
there is no origin as distinct from its LHS so effectively → is the same as
→→. Therefore in order to obtain the LIGR’s directly without dealing with
the RHS’s, it is simply necessary to take (??) and directly rename the arbi-
trary string T1a as T because it is not altered by the computation and deduce

the LIGR’s as 1T
a← 3T

{
a

b

}
and 1T

c← 2Tc.

Algorithm 6.1. After finding the set LIGR(2) as above, the LIGR’s in-
volved in forming the IRR(n + 1) from the IRR(n) need to be found for all
n ≥ 2. This can be done by finding, for each sequence of LIGR’s that can be
substituted into each other in sequence as in Section ?? (an example of which
is in (??)), what the next LIGR in the sequence could be by applying the back-
ward search i.e. F as usual. This has to be done until closure i.e. until no
more LIGR’s can be found if this is repeated.

While carrying this out, sequences of LIGR’s are examined that give rise
to the derivation of new LIGR’s generated from them that can be next in
the sequence. The set of possible sequences of LIGR’s is defined by the set
of LIGR’s currently found and the rules determining what LIGR’s can follow
others. This is mainly but not entirely determined by the relation “can be
followed by” or equivalently the relation “can be preceded by” on the set of
LIGR’s. Extra information can come from LIGR’s that can prevent certain
LIGR’s to follow at two or more places further in the sequence. Thus the list
of sequences of LIGR’s has to be continually updated as the list of LIGR’s is
increased. This by both adding new sequences which consist of just one new
LIGR, and adding a new preceding LIGR to any sequence.

In the results of this algorithm in (??) it would seem that many more
sequences of LIGR’s could be considered (in fact an infinite number) because
the results give LIGR’s that could be added on the right. This is not done
because the updated set of sequences being considered is obtained as above

Developments in the analysis techniques for non-terminating Turing Machines 29

which requires new LIGR’s that can precede previously known ones to be
included. This implies that the sequences being considered are added to on
the left, not the right. Anyway there is no point in using the previous idea
because for many sequences, no preceding LIGR’s can affect the new LIGR’s
that are produced by F so there is no point in considering them. This is
indicated by the absence of RCS’s, and limits the length of these sequences in
the results.

In more detail, for any LIGR X ∈ L, find F1(X) and if this is a new LIGR
add it to the list, and only if F applied to X gives F2(X) ̸= ∅, carry out F again to
obtain ∆F1(X1 ·X) and F2(X1 ·X) for each LIGR X1 that can precede X where the
requirement for precedence is given in (??). To obtain F1 and ∆F1 the methods
of subsection ?? apply if needed. This calculation can start from the previous
F2 with the substitution made for T indicated by X1. Any new LIGR’s from
∆F1(X1 · X) are added to L. For any members of F2(X1 · X) apply this algorithm
recursively i.e. with X1 · X taking the place of X above etc.. It is expected that
this algorithm will terminate because the matching criterion for new LIGR’s
that can be prepended to the sequence gets increasingly stringent as the length
of the strings increases.

The condition F2(X) ̸= ∅ will be met for each of the initial set of LIGR’s in
L because as shown above their RHS’s each have the form of an RCS.

It was convenient while doing this, for example TM1 with results in (??),
to add new LIGR’s to the end of the list, and use this ordering of LIGR’s
to order the sequences being analysed reverse lexicographically. This order is
maintained when additional sequences are obtained.

The following are a few general results that are likely to be useful.

Lemma 6.2. Suppose α is on the left and T1 has the pointer at its leftmost
symbol then:
If F applied to xT1 gives no RCS’s then F applied to xT1T2 gives no RCS’s.
The mirror image version with α on the right is:
If F applied to xT1 gives no RCS’s then F applied to xT2T1 gives no RCS’s.

Proof. Start by assuming that applying F to xT1T2 with α on the left gives
some RCS’s, then there is a sequence of reverse TM steps starting from xαT1T2
leading to a CS with the pointer at the right hand end. Then truncating the
starting CS by T2 results in a truncated set of reverse TM steps leading to
another CS which is the RCS for applying F to xT1 again with the pointer on
the right. This contradicts the assumption therefore F applied to xT1T2 gives
no RCS’s.

Lemma 6.3. If applying F to xT1 generates the set of LIGR’s S and no
RCS’s then applying F to xT1T2 generates likewise only the set S of LIGR’s.

Lemma 6.4. If applying F to xαT1 gives a set L1 of LIGR’s then applying
F to xαT1T2 gives a set L2 of LIGR’s such that L2 ⊇ L1. The mirror image

30 John Nixon

version is:
If applying F to xT1α gives a set L1 of LIGR’s then applying F to xT2T1α gives
a set L2 of LIGR’s such that L2 ⊇ L1.

Proof. Applying F to xT1 gives a set of LIGR’s determined by a set of reverse
TM steps taking the pointer from where it starts in xαT1 to a CS with the
pointer at α. By replacing the string T1 by T1T2 these reverse TM steps can still
be carried out with the string T2 playing no role, but in addition there could
be more such sequences of reverse TM steps giving rise to more LIGR’s.

Note that this result can sometimes be used to identify LIGR’s produced
by the program “origins” [?] using the values of j1 produced.

Lemma 6.5. If F applied to xT1 gives has an LIGR with the parameter value
j1 as defined in (??), then F applied xT1 truncated to a string of length j1 + 1

excluding α has some RCS’s and is the longest such truncation guaranteed to
have some RCS’s because the pointer just reaches symbol y′j1+1. The truncation
is such that it removes the symbols furthest from α.

This relates the largest value of j1 given by the program “origins” [?] to
the length of the string analysed (excludes α).

Definition 6.6. A finite set of LIGR’s Z is closed under F if for any se-
quence of members of Z that can be substituted into one another in sequence
as in (??), the backward search F applied to the result of this generates results
F1 that are each a member of the set Z and F2 = ∅.

Theorem 6.7. If there is a finite set Z of LIGR’s for a Turing Machine
that is closed under F as described above and includes all the LIGR’s involved
in obtaining the set IRR(2) from the single TM steps, then every origin of an
IRR for that TM can be obtained from the single TM steps by a sequence of
applications of LIGR’s each in Z as described in Section ??. This is obvious
by considering the derivation of members of IRR(n + 1) from IRR(n) for all
n ≥2.

It is also obvious that no LIGR’s could be removed from this set Z and Z

still have this property because members of Z are only put there when they
are required.

This all assumes that Z is finite. The case if the closure algorithm does not
terminate leading to an infinite set Z closed under F might be interesting but
is not considered here.

That there is a finite number of LIGR’s has been shown in the present case
by the hand calculations summarised in Table ??. Computer results (which
rapidly increase in number and time taken as n increases) established Table ??
using any value of the maximum length of the strings involved (n) between 10
and 16 and show the same result.

Developments in the analysis techniques for non-terminating Turing Machines 31

The relation “can be preceded by” on the LIGR’s was being discovered
as the LIGR’s were being discovered. The criterion is that the RHS of the
preceding LIGR must match the LHS of the original LIGR in state, string of
symbols and direction. The relation “can be preceded by” among the initial
LIGR’s that arise from the derivation of the IRR(2) from the single TM steps,
and these LIGR’s themselves are given in (??) but note that some of these
LIGR’s appear in the final set ((??)) with the numbering slightly changed due
to the use of d meaning a or b and other LIGR’s including those of length 1
being found.

ID LIGR
can be

preceded by

1 2T
b← 1aT 4, 9

2 3T
b← 1Tb 6, 7

3 1T
b← 1cT 1, 3

4 2T
c← 2bT 4, 9

5 1T
c← 2Tc 2

6 1T
a← 3Ta 2

7 1T
a← 3Tb 2

8 3T
c← 3cT 8

9 3T
b← 2aT 8

. (51)

6.1 A few useful lemmas etc.

While carrying out the main argument (the application of Algorithm ?? to the
example (??)) in Section ?? the following results (lemmas) emerged and are
collected here to avoid breaking up the logic of the grand search i.e. “depth
first” in which they arose. They may need to be referred to anywhere through-
out the main argument and speed up the computation of the results in this
section. They arose as induction hypotheses to deal with endlessly repeating
situations that arose or other complex situations arising there and so simplify
the presentation of this. In all these x is a state and T1 and T2 are strings.

It will be useful to use the symbol d in the remainder of this paper to mean
either a or b. This arose as an abbreviation useful for TM (??). Each instance
of d will be independent of any other one in a CS, so that all combinations
are possible. If the combinations that are possible are a subset of these, this
is more complicated and alternatives will be given in braces, but this does not
usually happen. This will allow many cases to be considered simultaneously
so speeding up the computations and shortening the notation. When doing
reverse computations, all possible reverse steps from any of the combinations
will be included.

Lemma 6.8. The reversed TM cannot cross where the symbol c is while
going right.

32 John Nixon

Proof. If the pointer is just left of the symbol c i.e. in the CS c a reverse step
to the right is only possible if it is to the CS 2c (using 2c → 1 c in reverse).
The next reverse TM step (if one is possible) must be to the left because there
are no TM steps of the form xz→ 2 y for any state x and symbol z that would
take the reversed TM to the right. Thus the symbol c is maintained and the
pointer has not crossed it.

Lemma 6.9. The reversed TM cannot cross where the symbol a is while
going left, or even arrive at it.

Proof. There is no reverse TM step of the form xa ← CS therefore the pointer
cannot get left of or arrive at where the a is, which is maintained.

Corollary 6.10. A consequence of this is that an a in the CS string to the
left of the pointer restricts the search for LIGR’s and RCS’s to the substring
to the right of the a. Therefore if while doing the backward search a CS arises
which is actually a set of CS’s that looks like a single CS’s because it contains
symbols d that can be a or b, it is possible treat this as a set of cases starting
with the d to the immediate left of the pointer being a. In each case one more
of the d’s is replaced by b, and the d to the immediate left of this d (if it exists)
is a and proceeds going left by one d at a time. The first case has the simplest
analysis under F, and ends with the case where all the d’s are b. For the case

when there are four d’s the following cases arise in this order

d · · · d · · · d · · · a
d · · · d · · · a · · · b
d · · · a · · · b · · · b
a · · · b · · · b · · · b
b · · · b · · · b · · · b

.

Lemma ?? will simplify each of these analyses in fact if α is on the right, no
RCS’s can result except for the last case, and the sets of LIGR’s produced are
nested such that they are all produced by the analysis of the last case alone.

See the examples in Section ??

6.1.1 Using the values of j1

Because of the fact that LIGR’s result from backward searches where the
pointer starts and ends up at α, any such result can be usefully classified by
the parameter j1 in (??), the maximum number of reverse TM steps away from
α during the computation. The resulting LIGR will have length (on the right)
equal to j1 + 2 because the symbol where the computation starts and α have
to be included. Therefore in the output of the program [?], the LIGR’s can
often be identified by just using the values of j1.

6.2 The main argument

This long section contains the details of the application of Algorithm ?? to TM
(??) which is summarised in Table ?? and again in Figure ??. The problem

Developments in the analysis techniques for non-terminating Turing Machines 33

with presenting this arose from the decision to present this in reverse lexico-
graphical order of the CS analysed instead of logical order of derivation. This
results in a much neater arrangement but it contains forward references. In
the following, the ID numbers of LIGR’s refer to the LIGR’s listed in (??)
which is the most up to date list of LIGR’s obtained, for which the relation
“can be preceded by” is given in (??).

Rather than repeating the phrase “Applying F to the sequence of LIGR’s

X gives . . .” on many occasions it will be shortened to X
F⇒

6.2.1 Sequences ending with LIGR 1

Applying F to 1 gives just 1αaT
b← 1caT i.e. LIGR 3 i.e. 1

F⇒ 3. Clearly
applying F to an LIGR of length one as is done here could possibly lead to
more results if T is specialised by giving a symbol at one end of the string
(here the left end) because the reversed TM might then take a step to the
right which cannot be determined until the leftmost symbol of T is known.
Therefore preceding LIGR’s must be considered. LIGR 1 can be preceded

by LIGR 4 giving 4 · 1 having the combined effect 3T
b← 2aT

b← 1aaT i.e.

3T
bb← 1aaT and 4 · 1 F⇒ 3 because F gives the calculation

1αaaT


b← 1caaT

←
{
3αaaT
3αabT

i.e. 1αaaT

{
b← 1caaT

← 3αadT
(52)

The first part of this is LIGR 3 as found before with aT taking the place of T,
and the second part is a pair of RCS’s. By specialising this further by giving
any more symbols of T, the first result will obviously not generate any new
LIGR’s after reducing the result to its shortest form, the result will merely
be replicated. However for the second part it is possible that the reverse
computation could take the pointer back to α by specifying the next symbol
of T and so generate more new LIGR’s, therefore the search has to continue
back, so we have thus far one RCS and

. . . 1
F⇒ {3}

. . . · 4 · 1 F⇒ {3}
. (53)

Because there are RCS’s, any LIGR’s that can precede 4 · 1 must be con-
sidered and F must be applied to all these. The LIGR’s that can precede
4 are just 8,10 and 21. The sequence 8 · 4 · 1 gives 3T

c← 3cT ← 1aacT.
Applying F to this can start from (??) with the substitution given by LIGR
8 1αaacT ← 3αadcT in addition to 3 as above and ∆F1 is just the result of
this backward search from 3αadcT and because the computation cannot go
back from there ∆F1(8, 4 · 1) = ∅ and F2(8 · 4 · 1) = ∅ using the definitions in
Section ??. Therefore there are no additional results of F (LIGR’s or RCS’s)

34 John Nixon

and it is now it is clear that no preceding LIGR’s specialising this T can give
any such new results so the search for new LIGR’s stops in this branch of the
grand search tree which has to continue with 10 · 4 · 1. This sequence has the
effect 1caT ← 1aaccdT and applying F gives 1αaaccdT ← 3αadccdT (apart
from the above results from 4 · 1) from which there are no further backward
steps so there are no new LIGR’s or RCS’s and these branches of the grand
search end i.e. ∆F1(10 · 4 · 1) = F2(10 · 4 · 1) = ∅. 21 · 4 · 1 has the effect
1cabcT ← 1aac3dcT and F applied to this by (??) (apart from the above

results from 4 · 1) gives 1αaac3dcT ←
{
3αaac3dcT
3αabc3dcT

which by Lemma ?? can-

not lead to an LIGR. Note that this is first of many examples of the use of
Lemma ?? that was not anticipated in the general algorithm ?? and was found
as a result of its systematic use combined with spotting a common situation
namely the reversed TM having to cross the symbol c while going right which
is impossible. This completes the analysis for all sequences that can precede
4 ·1 therefore the next sequence of LIGR’s to be considered in the grand search
is 5 · 1 i.e. 2T ← 2bT ← 1abT. The computation of F starts from 1αabT and
gives no result other than LIGR 3, so ∆F1(5, 1) = F2(5 ·1) = ∅. Next 9 ·1 must
be considered which is 1caT← 2acdT← 1aacdT.

9 · 1 F⇒ 1αaacdT←
{
1caacdT

3αadcdT
. (54)

which is also a special case of (??). The first of these is just LIGR 3 and the
second cannot continue, so there are no new LIGR’s from preceding 1 by 9 i.e.
∆F1(9, 1) = F2(9 · 1) = ∅.

Using Lemma ?? and Lemma ?? it is easy to show that similar results hold
for all the other LIGR’s that could precede LIGR 1 and the results can be
summarised as

∆F1({5, 9, 12, 14, 20, 29, 31}, 1) = F2({5, 9, 12, 14, 20, 29, 31} · 1) = ∅. (55)

This exhausts all search trees in the grand search starting from LIGR 1.

6.2.2 Sequences ending with LIGR 2

Next consider applying F to sequences ending with 2 which is 3T
b← 1Tb. F

applied to this gives

1Tbα

{ a← 3Tbd
c← 2Tbc

(56)

which are LIGR’s 6 and 7 so

2
F⇒ {6, 7}. (57)

The last symbol of T in (??) could affect this result so LIGR’s preceding 2

must be considered which are just 7,16,18,22,24 and 26. Consider 7 · 2 which

Developments in the analysis techniques for non-terminating Turing Machines 35

is 1T
a← 3Td ← 1Tdb. F gives 1Tdbα ← 1Tcbα in addition to 6 and 7 and so

can be potentially specialised further i.e. ∆F1(7, 2) = ∅ and F2(7 · 2) = 1Tcbα.
LIGR 7 can only be preceded by 2 and 15 so the next sequence to be considered

in the grand search is 2 · 7 · 2 which is 3T
b← 1Tb ← 1Tbdb. F applied to this

gives

1Tbdbα← 1Tbcbα← 1Tccbα (58)

i.e. ∆F1(2, 7 · 2) = ∅ (using Lemma ??) and F2(2 · 7 · 2) = 1Tccbα. This
RCS by Lemma (??) cannot lead to any new LIGR’s because the pointer
can never reach α by the reverse TM computation however many preceding
LIGR’s are added to the sequence. Therefore there is no point in continuing
grand search along this branch. Next consider 15 · 7 · 2 having the effect

3Tb5a← 1Tc

{
db

aa

}
dbdbdb. Applying F to this gives a result of the same form

as in (??) therefore the same conclusion follows and the grand search continues
from 16 · 2 which has the effect 3Tb5a← 1Tca3dbdb. Applying F to this again
gives results of the form (??) not leading to any new results for LIGR’s.

The sequence 18·2 has the effect 3Tb5a← 3Tcd

{
ba

cb

}
dbd← 1Tcd

{
ba

cb

}
dbdb.

Applying F to this gives

1Tcd

{
ba

cb

}
dbdbα

b← 1Tcd

{
ba

cb

}
dbcbα ← 1Tcd

{
ba

cb

}
dccbα. There is no point

going any further with the algorithm F because from this CS, by Lemma (??)
it is not possible for the pointer to get to α regardless of any preceding LIGR’s
i.e. no new LIGR’s can result from this, another unanticipated short cut to
Algorithm ??. Similar results all hold for {22, 24, 26} · 2 which all lead to
applying the backward search from a CS of the form 1Tdbdbα.

6.2.3 Sequences ending with LIGR 3

Consider sequences of LIGR’s ending with 3 which is 1T
b← 1cT. Applying F

starts from 1αcT
b← 1ccT showing that 3

F⇒ {3}. The LIGR 3 can be preceded
by 1, 3, 11, 13, 28 and 30. The sequence 1 ·3 is 2T← 1aT← 1caT. Applying F

starts from 1αcaT

{
b← 1ccaT

← 3αcdT
showing that two new RCS’s are the only extra

results of preceding 3 with 1. The sequence 4 · 1 · 3 is 3T ← 2aT ← 1caaT.
Applying F gives

1αcaaT← 3αcdaT← . . .


← 3αcbdT
b← 2acdaT
c← 3ccdaT

. (59)

36 John Nixon

where the pointer does not reach the a adjacent to T during this computation
of the last two parts, therefore these shorten to

1caT

{
b← 2acdT
c← 3ccdT

(60)

which are new LIGR’s and will be numbered 9 and 10 respectively, and the
RCS’s which require further backward searching. The sequence 8 · 4 · 1 · 3 is
3T← 3cT← 1caacT. Applying F gives

1αcaacT← 3αcbdcT

{
b← 1abadcT
c← 2bbadcT

(61)

after a few steps. These when abbreviated are

1caaT

{
b← 1abadT
c← 2bbadT

(62)

which will be numbered LIGR’s 11 and 12 respectively. Also there are now no
RCS’s, so this branch of the grand search ends.

The sequence 10 ·4 ·1 ·3 has the effect 1caT← 1caaccdT and F gives, using
(??).1,

1αcaaccdT← 3αcbdccdT

{
b← 1abadccdT
c← 2bbadccdT

(63)

and produces only 11 and 12 again and no new RCS’s.
The analysis for 21 · 4 · 1 · 3 is similar with the same result. Next is 5 · 1 · 3

with the effect 2T← 1cabT. Then applying F gives

1αcabT← 3αcdbT←

3αcdbT

{
b← 2acdbT
c← 3ccdbT

1αcdbT

(64)

apart. This gives two results which reduce to LIGR’s 9 and 10 again and an
RCS. Next is 4 · 5 · 1 · 3 which is 3T← 1cabaT and F gives

1αcabaT← 1αcdbaT← 3αcdbdT (65)

using (??) apart from one branch giving a CS which cannot be continued back.
This RCS requires going back in the grand search.

The next sequence is 8 · 4 · 5 · 1 · 3 giving 3T ← 1cabacT. Because of
Lemma ?? backward searching from here cannot lead to any RCS’s and F

gives (using (??))

1αcabacT← 3αcdbdcT
3← 3αcaddcT← 2αcadbcT. (66)

Developments in the analysis techniques for non-terminating Turing Machines 37

By Lemma ?? because of the a on the left of the pointer, no new LIGR’s can
result if this branch of the grand search is continued and because of the c on
the right no RCS’s result. From the next sequence 10 ·4 ·5 ·1 ·3 which has the
effect 1caT ← 1cabaccdT, F can start (by (??)) from 2αcadbccdT and again
by Lemma ?? no LIGR’s or RCS’s can result from this branch. The same
holds for 21 · 4 · 5 · 1 · 3 because the results are special cases of (??). The next
sequence is 5 · 5 · 1 · 3, and F can start from 1αcabbT which is a special case of
(??) and picking out the result that does not lead to an LIGR already found
gives

1αcabbT← 1αcdbbT← 1αccbbT (67)

from which there are no more reverse TM steps are possible so there are no
RCS’s or LIGR’s.

Applying F to 9 · 5 · 1 · 3 can start from 1αcabacdT i.e. (??) with dT in
the place of T so this gives 2αcadbcT ← 1αcadacdT from which there are no
RCS’s or new LIGR’s.

12 · 5 · 1 · 3 is 1caaT ← 2bbadT ← 1cabbbadT for which the analysis with
F is a special case of (??) so there are no RCS’s or LIGR’s produced by F.

14 · 5 · 1 · 3 is 1ccT ← 2bbcT ← 1cab3cT. The same argument holds here.
For 20 · 5 · 1 · 3 which its application of F can start from 1αcabaccdcT ←
2αcadbccdcT using (??), which by Lemma ?? cannot generate any more
LIGR’s. Both of {29, 31} · 5 · 1 · 3 lead to special cases of (??) giving no
more LIGR’s or RCS’s. 12 · 1 · 3 is 1caaT ← 2bbadT ← 1cabbadT. This
again is a special case of (??) showing that there are no more results. Likewise
for each of {14, 29, 31} · 1 · 3. For 20 · 1 · 3 its application of F starts from
1αcaaccdcT which is a special case of (??) and gives no new results.

The sequence 3·3 has the effect 1T
b← 1cT← 1ccT. F gives 1αccT← 2αccT

an RCS so continue. 1 · 3 · 3 has the effect 2T
b← 1aT← 1ccaT and F gives

1αccaT← 2αccaT← 2αbcaT

{
b← 1abcaT
c← 2bbcaT

(68)

which shortens to

1ccT←
{
1abcT

2bbcT
(69)

(because the rightmost position of the pointer in this derivation is just before
the substring aT that is unaltered) and gives no RCS’s. Equation (??) will
be called LIGR’s 13 and 14 respectively. Consider the next sequence 3 · 3 · 3
with effect 1T

b← 1cT ← 1cccT which is a special case of (??). Next are
{11, 13, 28, 30} · 3 · 3 which due to Lemma ?? only give LIGR 3 with F. Next
consider 11 · 3 which is 1caaT← 1cabadT which,← 3αcdbddT by (??) which,
continuing with F in 3 steps gives 3αcadddT, which by Lemma ?? gives no
more LIGR’s, and in one step gives the RCS 1αcdbdbT. Continuing, the next
sequence is 3 · 11 · 3 which is 1aaT ← 1cabadT so applying F is as above.

38 John Nixon

Continuing, 1 ·3 ·11 ·3 is 2aT← 1cabadT again giving the same result. Again,
4 · 1 · 3 · 11 · 3 gives 3T ← 1cabadT and the same result with F. {8, 10, 21} ·
4 · 1 · 3 · 11 · 3 gives 3T← 1cabadcT′ so by Lemma ?? so no new LIGR’s from
F can be generated on these branches. For the sequence 5 · 1 · 3 · 11 · 3 the
LIGR’s don’t match because 5 is 2T← 2bT whereas 1 ·3 ·11 ·3 starts from 2aT.
Likewise {12, 14, 29, 31} ·1 ·3 ·11 ·3 are excluded. Both {9, 20} ·1 ·3 ·11 ·3 give
results that are the same by Lemma ?? because of the c’s in position 6 and the
sequences are the same up to that point. A long calculation with up to 13 TM
steps is needed to show that the LIGR’s produced are 3, 9, 10, 28− 31 with no
RCS’s. The sequence 3 · 11 · 3 cannot be preceded by any of 3, 11, 13, 28, 30 so
the next case to be considered is 13 · 3 which is 1ccT ← 1abcT ← 1cabcT. F

gives (apart from the first reverse step to the left giving LIGR 3)

1αcabcT←

2acdbcT

3ccdbcT

2αcdbcT
(70)

which when shortened give LIGR’s 9 and 10 and an RCS. Only 3 can precede
13 and 3 · 13 · 3 is 1cT ← 1ccT ← 1cabcT. Note that here an extra symbol
c was needed in order that the RHS of 3 matched the LHS of 13 · 3. F

gives the same result as above. Of the LIGR’s that can precede 3 only 3 is
compatible because of the symbol c on left and this gives 3 · 3 · 13 · 3 which is
1T ← 1cT ← 1cabcT which again gives the same result of F. 1 · 3 · 3 · 13 · 3
is 2T ← 1aT ← 1cabcaT. Applying F (using (??)) can start from 2αcdbcaT
(apart from LIGR’s already found) and gives no RCS’s and LIGR’s 20 and 21.
3 · 3 · 3 · 13 · 3 is 1T ← 1cT ← 1cabccT. Likewise F gives LIGR’s 20 and 21

and no RCS’s because these computations are the same because the pointer
never gets to the symbol just left of T, and likewise for 11 · 3 · 3 · 13 · 3 which
is 1caaT← 1cabcabadT and 13 · 3 · 3 · 13 · 3 which is 1ccT← 1cabcabcT and
{28, 30} · 3 · 3 · 13 · 3 by Lemma ??. The sequences {11, 13, 28, 30} · 3 · 13 · 3
are not possible because of other compatibility restrictions based non-adjacent
LIGR’s. The sequences 28 ·3 and 30 ·3 both give results that are special cases
of (??) giving no RCS’s or LIGR’s.

6.2.4 Sequences ending with LIGR 4

LIGR 4 is 3T
b← 2aT. F gives

2αaT

{
b← 1aaT
c← 2baT

(71)

which shortens to 1 and 5, and this result could depend on the leftmost sym-
bol of T because right-moving reverse steps could occur. Therefore LIGR’s
preceding 4 must be considered. 8 · 4 is 3T ← 3cT ← 2acT, and applying

Developments in the analysis techniques for non-terminating Turing Machines 39

F gives no new LIGR’s (i.e. excluding 1 and 5 above) or RCS’s. 10 · 4 is
1caT ← 3ccdT ← 2accdT and F gives no new LIGR’s or RCS’s and likewise
for 21 · 4 which is 1cabcT← 2acccdcT because of Lemma ??. Therefore these

results show that {8, 10, 21} · 4 F⇒ {1, 5} only.

6.2.5 Sequences ending with LIGR 5

LIGR 5 is 2T ← 2bT and applying F gives 2αbT

{
b← 1abT
c← 2bbT

which shortens to

1 and 5 so 5
F⇒ {1, 5}. The sequence 4 · 5 is 3T ← 2aT ← 2baT. Applying

F starts from 2αbaT and gives no new LIGR’s and no RCS’s. This is likewise
true for 5,9,12,14,20,29 and 31 preceding 5 and all follow from the fact that
2 a and 2 b cannot be arrived at from a step of the TM, so all sequences ending

with {4, 5, 9, 12, 14, 20, 29, 31} · 5 F⇒ {1, 5}.

6.2.6 Sequences ending with LIGR 6

LIGR 6 is 1T ← 2Tc. Applying F gives 2Tcα ← ∅. A left-moving reverse
step could occur depending on the rightmost symbol of T so this needs to
be specialised by considering all possible previous LIGR’s i.e 2 and 15. The
sequence 2 · 6 is 3T← 1Tb← 2Tbc and applying F gives 2Tbcα← 1Tacα. By
Lemma ?? this cannot lead to new LIGR’s because α can never be reached
by the pointer however the string is specialised by preceding LIGR’s in the
sequence. Likewise for 15 · 6.

Note that Lemma ?? was first discovered after studying this case in par-
ticular applying F to sequences of the form 2 · (8 · 2)k · 6 that arose during the
application of Algorithm ?? using an induction argument.

6.2.7 Sequences ending with LIGR 7

This starts with applying F to 7 i.e. 1T← 3Td and gives 3Tdα← 1Tdb shorten-
ing to LIGR 2 because the d plays no role. Because the first LIGR preceding
LIGR 2 is LIGR 7 and conversely, the same way of reasoning generates at
first alternating sequences of 2 and 7 which can be analysed using Lemma ??
and its corollary which was derived with this example in mind. It also ap-
plies to other cases. Applying this to the sequence 15 · 7 with combined effect

3Tb5a ← 3Tc

{
db

ca

}
dbdbd, if the last but one d is a the only possible reverse

search paths for applying F to 15 · 7 are confined to the string bd restricting
the set of LIGR’s produced and no RCS’s can be produced. If the last but
one d is b and the last but two d is a, then the CS ends with 3Tabbbd and
the a cannot be reached in the backward search for F. Again no RCS’s can
be produced by F and the LIGR’s produced are a superset of those produced

40 John Nixon

in the above case by Lemma ??. Now suppose these d’s are both b and the
lower element of the array is taken, then the first a will again prevent any
RCS’s being produced and the LIGR’s will be from 3Tabbbbd again a superset
of the preceding case. Now taking the upper element in the array with the
first d being a gives again no RCS’s and the LIGR’s are from 3Tabbbbbd again
a superset of the preceding case. Finally, this leaves the case 3Tcb6dα which
generates LIGR’s which are again a superset of those from the preceding case.

Using this as starting point with the two cases where the d is a and b, F
gives, using the program “origins” [?], a long list of results for case a. It gives
43 LIGR parts which exactly account for LIGR’s 15− 19, and LIGR 2 which
corresponds to the single result with y.j1 = 1. The 19 RCS’s all have a c that
must be crossed to get to α which is impossible because of Lemma ??, therefore
these RCS’s can be ignored because they can never lead to more LIGR’s. The
case 3Tcb6b needs to be considered too. Applying the program again and using
Lemma ?? gives LIGR 2 and 24 other LIGR parts which correspond to LIGR’s
22− 27, and no RCS’s except those having a c that needs to be crossed that
can be ignored.

A very similar argument works for applying F to any sequence of LIGR’s
that have an effect (column 2 of Table ??) originating from a CS of the form
3T(bd)3d showing that the same LIGR’s are produced and no usable RCSs.
This applies to the following sequences: {16, 18, 22, 24, 26} · (2 · 7)3, 15 · (7 ·
2)2 · 7, {16, 18, 22, 24, 26} · 2 · 7 · 2 · 7, 15 · 7 · 2 · 7.

Similar arguments also work for the remaining cases ending with LIGR 7

summarised in the following tables.

Developments in the analysis techniques for non-terminating Turing Machines 41

Table 4: LIGR’s and RCS’s

LIGR sequence CS analysed RCS’s produced LIGR’s produced

16 · 2 · 7 ← 3Tca3dbdbd ∅ from 3Tab4d ⊆ from 3Tb6d =
{2, 15− 19, 22− 27}

18 · 2 · 7 ← 3Tcd

{
ba
cb

}
dbdbd none useful

from 3Tcdcb5d =
{2, 15− 19, 22− 27} (see Table ??)

22 · 2 · 7 ← 3Tadbdbd ∅ from 3Tab4d
24 · 2 · 7 ← 3Tcbdbdbd none useful from 3Tcb5d ⊆ from 3Tcdcb5d
26 · 2 · 7 ← 3Tcadbdbdbd ∅ from 3Tab6d = from 3Tb6d

Table 5: LIGR’s generated by the computer program “origins” [?]

3Tcdcb5a 3Tcdcb5b

j1 # LIGR’s j1 # LIGR’s
0 1 2 0 1 2

5 42 15− 19 2 6 22, 23
3 6 24, 25
5 12 26, 27

In Table ?? “CS analysed” refers to the rightmost CS in the expression for
the effect of the LIGR sequence, to which F is applied. In the column for the
RCS’s produced, the phrase “none useful” means that all the RCS’s contain a
c that would have to be passed to generate an LIGR (by Lemma ??), therefore
because this is impossible, there can be no new LIGR’s derived by using any of
these RCS’s in the procedure for generating all the LIGR’s. In the last column,
the set of LIGR’s produced is the same as the set of LIGR’s produced from
other CS’s that follow the “from”. These and the other results can be derived
by using Lemmas ??, ??, and its corollary. In Table ?? the CS’s to which F is
applied head the two composite columns. The results for the LIGR’s are given
in the body of the table. The parameter j1 is as in Section ??. The column
headed # is the number of LIGR parts produced by the program “origins” [?]
and the column headed LIGR’s gives the identification numbers of the sets of
LIGR’s as defined in (??).

6.2.8 Sequences ending with LIGR ≥ 8

LIGR 8 is 3T← 3cT and 3αcT

{
b← 2acT
c← 3ccT

shortens to 4 and 8 so . . . 8
F→ {4, 8}

but because the left end symbol of T is not specified, specialising it by including
previous LIGR’s could generate more results. 8 · 8 is 3T ← 3cT ← 3ccT and

3αccT gives nothing new so . . . 8 · 8 F→ {4, 8}. Similarly it follows that 10 · 8
and 21 · 8 under F produce no new results, so . . . {8, 10, 21} · 8 F→ {4, 8}. In a

similar manner also the following can be easily established . . . {9} F→ {1, 5}
. . . {10} F→ {4, 8}

42 John Nixon

. . . {11} F→ {3}

. . . {12} F→ {1, 5}

. . . {13} F→ {3}

. . . {14} F→ {1, 5}
In all these cases, F produces results that cannot, when specialised to the
cases where T has particular forms, generate any new LIGR’s from them. This
results from the pointer not reaching next to the arbitrary string T at any
point in these derivations. These are examples of the absence of RCS’s in the
result of F hence not giving any new LIGR’s by specialising the original LIGR
sequence by preceding it with another LIGR.

For sequences ending in 15− 19 the method given under sequences ending
in 7 applies. The results for sequences ending 20, 21 are just a single TM step
in each case. For sequences ending in 22 and 23, the symbol a on the left
makes these cases simple. For sequences ending in 25, after one reverse TM
step Lemma ?? applies showing that no LIGR’s can be generated regardless of
any preceding LIGRs. For sequences ending in 26 and 27 the symbol a makes
these analyses simple by Lemma ?? and likewise for sequences ending with
28− 31 the symbols c play the same role. All the results are in Table ??.

6.2.9 Sequences ending with LIGR 24

LIGR 24 can be preceded by LIGR 7 so the set of all sequences ending in 7

can be each potentially followed by 24 (there could be cases where matching
does not occur), so the same set of sequences ending in 7 in Table ?? are
used initially. To these Lemma ?? is applied together with the use of the
program “origins” [?]. These results are very similar to the set of all results
for sequences ending in 7 with the result that usable RCS’s occur except for
the case (7 · 2)3 · 7 · 24 thus this is summed up in the shortest sequence of
LIGR’s that give no useable RCS’s which is (7 · 2)3 · 7 · 24. The other cases
should be regarded just as interim results and are not written in Table ??. In
all these cases the LIGR’s produced are just 2, 22 − 25. The next cases start
with an LIGR not 2 or 7, and end with these alternating followed by 24 and
have the same results. Next 18 · 24 gives no usable RCS’s and again LIGR’s
2, 22−25. Next the grand search gives 24 ·24 followed by all sequences ending
with 7 followed by 24 · 24. Again all these results are summarised by noting
the shortest sequence not giving usable RCS’s which is (7 · 2)3 · 7 · 24 · 24 that
generates only LIGR’s 2, 22− 25 again. Next in the grand search is 18 · 24 · 24
giving the same result again. Next is all the sequences ending with 7 followed
by 24 · 24 · 24. By now it looks as if an infinite sequence of similar results is
occurring.

The reason for this is easy to find. Each time the LIGR 24 is added at
the end of a sequence ending in 24, the number of c’s in the string preceding
the bdbd increases by 1. Replacing the d’s by b to stop the computation

Developments in the analysis techniques for non-terminating Turing Machines 43

terminating, the initial steps in one branch of the backward search from 3cbbbb

shows that

3T′cb3bα←



1T′cbbbbb

2T′ccbabc

3T′ccbabd

3T′ccdabα
2T′bbadbα
2T′ccbbbc

3T′ccbbbd

2T′bbbcbα
2T′cbaabc

3T′cbaabd

2T′cbabbc

3T′cbabbd

(72)

giving LIGR’s 2, 22− 25 and RCS’s 3T′ccdabα, 2T′bbadbα, 2T′bbbcbα. If the
last symbol of T′ is c, continuing the backward search from these RCS’s leads
to one of the CS’s 3ccc or 2cbb. In each case the backward search has only one
possible move given by 3ccc← 3ccc and 2cbb← 2bbb which can be iterated
to give

3ckcc← 3cck+1

2ckbb← 2bbk+1 (73)

which applies if the last symbols of T′ are ck . Therefore any RCS’s resulting
from applying F to any sequence ending with 24 are in 1 to 1 correspondence
with any RCS’s resulting from any sequence ending with 24k+1 resulting from
the insertion of either the string ck or bk according to (??) where k is any
positive integer. Such an RCS without any c’s after the insertion (i.e. could
generate new LIGR’s) must correspond to a similar one before the insertion,
i.e. RCS’s for k = 1 which do not exist. Therefore there are no RCS’s that
could lead to new LIGR’s for any k > 0.

Table 6: The RCS’s and LIGR’s resulting from F applied to sequences of
LIGR’s

Possible sequences
of LIGR’s It’s effect

Usable RCS’s
i.e. those excluding
those because of
Lemmas ?? and ??

LIGR’s produced by F

1 2T
b← 1aT 1caT 3

4 · 1 3T
b← 2aT

b← 1aaT 3αadT 3

8 · 4 · 1 3T
c← 3cT← 1aacT ∅ 3

10 · 4 · 1 1caT← 3ccdT← 1aaccdT ∅ 3
21 · 4 · 1 1cabcT← 3cccdcT← 1aac3dcT ∅ 3

5 · 1 2T← 2bT← 1abT ∅ 3

9 · 1 1caT← 2acdT← 1aacdT ∅ 3

12 · 1 1caaT← 2bbadT← 1abbadT ∅ 3

14 · 1 1ccT← 2bbcT← 1abbcT ∅ 3

44 John Nixon

20 · 1 1cabcT← 2accdcT← 1aaccdcT ∅ 3

2 3T
b← 1Tb

{
3Tbd
2Tbc {6, 7}

7a · 2 1T
a← 3Ta← 1Tab ∅ {6, 7}

7b · 2 1T
a← 3Tb← 1Tbb 1Tcbα {6, 7}

2 · 7b · 2 3T
b← 1Tb← 1Tbbb ∅ {6, 7}

15 · 7 · 2
3Tb5a← 1Tc

{
db
aa

}
dbdb

← 1Tc

{
db
aa

}
dbdbbb

∅ {6, 7}

16 · 2
3Tb5a← 3Tc

{
db
aa

}
dbdbb

← 1Tc

{
db
aa

}
dbdbbb

∅ {6, 7}

18 · 2
3Tb5a← 3Tcd

{
ba
cb

}
dbd←

1Tcd

{
ba
cb

}
dbdb

∅ {6, 7}

{22, 24, 26} · 2 ← 1T∗dbdb ∅ {6, 7}

3 1T
b← 1cT 1ccT 3

1 · 3 2T← 1aT← 1caT 3αcdT 3

4 · 1 · 3 3T← 2aT← 1caaT 3αcbdT {3, 9, 10}
8 · 4 · 1 · 3 3T← 3cT← 1caacT ∅ {3, 9, 10, 11, 12}

10 · 4 · 1 · 3 1caT← 3ccdT
← 1caaccdT ∅ {3, 9, 10, 11, 12}

21 · 4 · 1 · 3 1cabcT← 3cccdcT
← 1caac3dcT

∅ {3, 9, 10, 11, 12}
5 · 1 · 3 2T← 2bT← 1cabT 1αcdbT {3, 9, 10}
4 · 5 · 1 · 3 3T← 2aT← 1cabaT 3αcdbdT {3, 9, 10}
8 · 4 · 5 · 1 · 3 3T← 3cT← 1cabacT ∅ {3, 9, 10}
10 · 4 · 5 · 1 · 3 1caT← 3ccdT← 1cabaccdT ∅ {3, 9, 10}

21 · 4 · 5 · 1 · 3 1cabcT← 3cc2dcT
← 1cabac3dcT

∅ {3, 9, 10}
5 · 5 · 1 · 3 2T← 2bT← 1cabbT ∅ {3, 9, 10}
9 · 5 · 1 · 3 1caT← 2acdT← 1cabacdT ∅ {3, 9, 10}

12 · 5 · 1 · 3 1caaT← 2bbadT← 1cab3adT ∅ {3, 9, 10}

14 · 5 · 1 · 3 1ccT← 2bbcT← 1cab3cT ∅ {3, 9, 10}

20 · 5 · 1 · 3 1cabcT← 2accdcT
← 1cabaccdcT ∅ {3, 9, 10}

9 · 1 · 3 1caT← 2acdT← 1caacdT ∅ {3, 9, 10, 11, 12}
12 · 1 · 3 1caaT← 2bbadT← 1cabbadT ∅ {3, 9, 10}
14 · 1 · 3 1ccT← 2bbcT← 1cabbcT ∅ {3, 9, 10}

20 · 1 · 3 1cabcT← 2accdcT
← 1caaccdcT ∅ {3, 9, 10, 11, 12}

3 · 3 1T
b← 1cT← 1ccT 2αccT {3}

1 · 3 · 3 2T
b← 1aT← 1ccaT ∅ {3, 13, 14}

3 · 3 · 3 1T
b← 1cT← 1cccT ∅ {3, 13, 14}

{11, 13, 28, 30} · 3 · 3 ← 1cc · · · ∅ {3}
11 · 3 1caaT← 1abaaT← 1cabaaT 3αcadbdT {3, 9, 10}
11 · 3 1caaT← 1ababT← 1cababT 1αcdbdbT {3, 9, 10}
3 · 11 · 3 1aaT← 1caaT← 1cabadT Same results {3, 9, 10}

Developments in the analysis techniques for non-terminating Turing Machines 45

1 · 3 · 11 · 3 2aT← 1aaT← 1cabadT Same results {3, 9, 10}
4 · 1 · 3 · 11 · 3 3T← 2aT← 1cabadT Same results {3, 9, 10}
{8, 10, 21} · 4 · 1 · 3 · 11 · 3 ← 1cabadcT ∅ {3, 9, 10}
5 · 1 · 3 · 11 · 3 No match
9 · 1 · 3 · 11 · 3 1caT← 2acdT← 1cabaacdT ∅ {3, 9, 10}
9 · 1 · 3 · 11 · 3 1caT← 2acdT← 1cababcdT ∅ {3, 9, 10, 28− 31}
{12, 14, 29, 31} · 1 · 3 · 11 · 3 No match
20 · 1 · 3 · 11 · 3 1cabcT← 2accdcT← 1cabadccdcT ∅ {3, 9, 10, 28− 31}
3 · 3 · 11 · 3 No match
11 · 3 · 11 · 3 No match
13 · 3 · 11 · 3 No match
13 · 3 1ccT← 1abcT← 1cabcT 2αcdbcT {3, 9, 10}
3 · 13 · 3 1cT← 1ccT← 1cabcT Same results {3, 9, 10}
3 · 3 · 13 · 3 1T← 1cT← 1cabcT Same results {3, 9, 10}
1 · 3 · 3 · 13 · 3 2T← 1aT← 1cabcaT ∅ {3, 9, 10, 20, 21}
3 · 3 · 3 · 13 · 3 1T← 1cT← 1cabccT ∅ {3, 9, 10, 20, 21}
11 · 3 · 3 · 13 · 3 1caaT← 1abadT← 1cabcabadT ∅ {3, 9, 10, 20, 21}
13 · 3 · 3 · 13 · 3 1ccT← 1abcT← 1cabcabcT ∅ {3, 9, 10, 20, 21}
{11, 13} · 3 · 13 · 3 No match

4 3T← 2aT

{
1aaT
2baT {1, 5}

8 · 4 3T← 3cT← 2acT ∅ {1, 5}
10 · 4 1caT← 3ccdT← 2accdT ∅ {1, 5}

21 · 4 1cabcT← 3cccdcT← 2ac3dcT ∅ {1, 5}

5 2T← 2bT

{
1abT
2bbT {1, 5}

{4, 5, 9, 12, 14, 20} · 5 3T← 2aT←
{
2ba . . . T
2bb . . . T ∅ {1, 5}

6 1T← 2Tc ∅ ∅
{2, 15} · 6 3T← 1Tb← 2T . . . bc ∅ ∅
7 1T← 3Td 1Tdb {2}
2 · 7 3T← 1Tb← 3Tbd 2Taaα {2}
7 · 2 · 7 1T← 3Td← 3Tdbd 1Taadα {2}
2 · 7 · 2 · 7 3T← 3Tbdbd 1Tcaadα {2, 22, 23}
7 · 2 · 7 · 2 · 7 1T← 3Tdbdbd 1Tabaddα {2, 22− 25}
2 · 7 · 2 · 7 · 2 · 7 3T← 3Tbdbdbd 1Tcabaddα {2, 22− 25}
7 · 2 · 7 · 2 · 7 · 2 · 7 1T← 3Tdbdbdba ∅ {2, 15− 19}
7 · 2 · 7 · 2 · 7 · 2 · 7 1T← 3Tdbdbdbb ∅ {2, 22− 27}

{16, 18, 22, 24, 26} · (2 · 7)3 ← 3T′(db)3d ∅ {2, 15− 19, 22− 27}

15 · 7 · 2 · 7 · 2 · 7 ← 3Tc

{
db
aa

}
dbdbdbdbd ∅ {2, 15− 19, 22− 27}

{16, 18, 22, 24, 26}
· 2 · 7 · 2 · 7 3Tb5d← 3T′dbdbdbd ∅ {2, 15− 19, 22− 27}

15 · 7 · 2 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbdbd ∅ {2, 15− 19, 22− 27}

{16, 22} · 2 · 7 ← 3T′adbdba ∅ {2}
{16, 22} · 2 · 7 ← 3T′adbdbb ∅ {2, 22− 25}
18 · 2 · 7
24 · 2 · 7
26 · 2 · 7

← 3Tcd

{
ba
cb

}
dbdbx

← 3Tcbdbdbx
← 3Tcadbdbdbx

 ∅
{
x = a {2, 15− 19}
x = b {2, 22− 27}

15 · 7 3Tb5a← 3Tc

{
db
aa

}
dbdbd ∅ {2, 15− 19, 22− 27}

8 3T← 3cT

{
2αacT
3αccT {4, 8}

{8, 10, 21} · 8 ← 3ccT′ ∅ {4, 8}
9 1caT← 2acdT ∅ {1, 5}

46 John Nixon

10 1caT← 3ccdT ∅ {4, 8}
11 1caaT← 1abadT ∅ {3}
12 1caaT← 2bbadT ∅ {1, 5}
13 1ccT← 1abcT ∅ {3}
14 1ccT← 2bbcT ∅ {1, 5}

15 3Tb5a← 1Tc

{
db
aa

}
dbdb ∅ {6, 7}

16 3Tb5a← 3Tca3dbd ∅ {2, 22, 23}

17 3Tb5a← 2Tca3dbc ∅ ∅

18 3Tb5a← 3Tcd

{
ba
cb

}
dbd ∅ {2, 22− 25}

19 3Tb5a← 2Tcd

{
ba
cb

}
dbc ∅ ∅

20 1cabcT← 2accdcT ∅ {1, 5}
21 1cabcT← 3cccdcT ∅ {4, 8}
22 3Tbbb← 3Tadbd ∅ {2, 22, 23}
23 3Tbbb← 2Tadbc ∅ ∅

(7 · 2)3 · 7 · 24k
{16, 18, 22, 24, 26}·
(2 · 7)3 · 24k
15 · 7 · (2 · 7)2 · 24k
{16, 18, 22, 24, 26}·
(2 · 7)2 · 24k
15 · 7 · 2 · 7 · 24k
{16, 22}·
2 · 7 · 24k
18 · 2 · 7 · 24k
24 · 2 · 7 · 24k
26 · 2 · 7 · 24k
15 · 7 · 24k
18 · 24k

← 3Tdbdckbdbx

← 3Tdbdckbdbx

← 3Tcdbdbdbdckbdbx

← 3Tdbdckbdbx

← 3Tcdbdbdckbdbx

← 3Tadckbdbx

← 3Tcdcbdckbdbx
← 3Tcdcbdckbdbx
← 3Tcbdckbdbx
← 3Tcadbdckbdbx

← 3Tc

{
db
aa

}
dckbdbx



∗ ∅
{
x = a {2}
x = b {2, 22− 25}

25 3Tb3b← 2Tcbdbc ∅ ∅

26 3Tb5b← 3Tcadbdbd ∅ {2, 22− 25}

27 3Tb5b← 2Tcadbdbc ∅ {2}
28 1abbccbT ∅ {3}
29 2bbbccbT ∅ {1, 5}
30 1abbccacT ∅ {3}
31 2bbbccacT ∅ {1, 5}

* See section ??

************* checked to here **************** Section ?? has also had a lot of work done on it since
the previous update.

Developments in the analysis techniques for non-terminating Turing Machines 47

1/3→



4→


8

10

21

5

9

12

14

20

2/{6, 7} →



7→
{
2

15

16

18

22

24

26

3/3→



1→



4/{9, 10} → {8, 10, 21}/{11, 12}

5/{9, 10} →



4→


8

10

21

5

9

12

14

20

{9, 20}/{9, 10, 11, 12}
{12, 14}/{9, 10}

3→ {1, 3}/{13, 14}

11/{9, 10} → 3→ 1→

4→


8

10

21

{9, 20}/{28− 31}

13/{9, 10} → 3→ 3→ {1, 3, 11, 13}/{20, 21}

4/{1, 5} →


8

10

21

5/{1, 5} →



4

5

9

12

14

20

6→
{
2

15

7/{2} →



2→


7→


2/{22, 23} •→

7/{24, 25} →
{
2→ {7, 16, 18, 22, 24, 26}/{15− 19, 26, 27}
15/{15− 19, 26, 27}

{16, 18, 22, 24, 26}/{15− 19, 24− 27}
15/{15− 19, 22− 27}

{16, 22}/{22− 25}
{18, 24, 26}/{2, 15− 19, 22− 27}

15/{15− 19, 22− 27}

8/{4, 8} →


8

10

21

{10, 21}/{4, 8}
{9, 12, 14, 20, 29, 31}/{1, 5}
{11, 13, 28, 30}/3
{15}/{6, 7}
{16, 22}/{2, 22, 23}
{17, 19, 23, 25}
{18, 26}/{2, 22− 25}
{27}/2
24→ . . . /{2, 22− 25}

Figure 1: Map of the derivation of the LIGR’s using the notation given in
Section ??. The bullet • means that the computation does not need to go
beyond this point because the LIGR’s generated are vacuous. See Section ??.

48 John Nixon

6.3 Summary of the analysis for TM ??

In order to summarise further the results of the analysis of TM ?? in (??)
just giving the LIGR’s and showing the overall structure of the results, the
following representation was developed that is given in Figure ??. Next is a
description of the notation used.

Each tree starts from one of the LIGR’s X1 with X1/{Yi} → X2, which means
the LIGR X1 under F gives LIGR’s {Yi} and X2 is one of the LIGR’s that can
precede X1, and the sequence S of LIGR’s starts with the single element S = X1.
The following appears repeatedly:
. . . → X1/{Yi} → X2/{Yi+1} → This means F is applied to a sequence
of LIGR’s S, that ends with X1, substituted into each other as above. This
gives LIGR’s ∆F = {Yi} and in general some RCS’s. There is in general a set
of LIGR’s X2 that can precede X1 and each such X2 defines a separate branch
of the tree rooted by the original LIGR at the start. Branching points are
indicated by braces. Applying F again starts recursively from each of the
above RCS’s with the substitution given by X2 i.e. S is replaced by X2 · S for
each X2 that can precede X1. The result of this gives again the set of LIGR’s
∆F1 which is {Yi+1} etc.. In general, there can be many members of Yi, Yi+1

etc. for each sequence S. Also because Yi = ∅ is so frequent, /∅ will be omitted
if it occurs. A branch of the tree terminates when the set of RCS’s above is ∅
or if there are no such LIGR’s X2. Comparing ?? with (??) should clarify the
notation.

Developments in the analysis techniques for non-terminating Turing Machines 49

Table of LIGR’s is as follows obtained using the method of Section ??. The
column headed q is the length of the shortest IRR generated using it. If there
isn’t one the symbol ∞ is used making the LIGR vacuous.

q LIGR # q LIGR

1 2 2T
b← 1aT 17 ∞ 3Tb5a

c← 2Tca3dbc

2 2 3T
b← 1Tb 18 ∞ 3Tb5a

a← 3Tcd

{
ba

cb

}
dbd

3 2 1T
b← 1cT 19 ∞ 3Tb5a

c← 2Tcd

{
ba

cb

}
dbc

4 2 3T
b← 2aT 20 6 1cabcT

b← 2accdcT

5 2 2T
c← 2bT 21 6 1cabcT

c← 3cccdcT

6 2 1T
c← 2Tc 22 5 3Tbbb

a← 3Tadbd

7 2 1T
a← 3Td 23 5 3Tbbb

c← 2Tadbc

8 2 3T
c← 3cT 24 ∞ 3Tb3b

a← 3Tcbdbd

9 4 1caT
b← 2acdT 25 ∞ 3Tb3b

c← 2Tcbdbc

10 4 1caT
c← 3ccdT 26 ∞ 3Tb5b

a← 3Tcadbdbd

11 5 1caaT
b← 1abadT 27 ∞ 3Tb5b

c← 2Tcadbdbc

12 5 1caaT
c← 2bbadT 28 7 1cababT

b← 1abbccbT

13 4 1ccT
b← 1abcT 29 7 1cababT

c← 2bbbccbT

14 4 1ccT
c← 2bbcT 30 9 1cababcT

b← 1abbccacT

15 ∞ 3Tb5a
b← 1Tc

{
db

aa

}
dbdb 31 9 1cababcT

c← 2bbbccacT

16 ∞ 3Tb5a
a← 3Tca3dbd

(74)

Because new LIGR’s have been found, the “can be preceded by” relation needs
to be updated as follows and relates to the numbering of LIGR’s in (??).

1, 5 4, 5, 9, 12, 14, 20, 29, 31
2 7, 16, 18, 22, 24, 26
3 1, 3, 11, 13, 28, 30
4, 8 8, 10, 21
6, 7 2, 15
9− 14, 20, 21 3

15, 16, 17, 18, 19 7

20, 21 3

22, 23 7, 16, 22, 24, 26
24, 25 7, 18, 24, 26
26, 27 7

28, 29, 30, 31 3

(75)

50 John Nixon

Note that there may be other symbols in either of the strings T that prevent a
match of the sequences.

The results summarised in Table ?? will show that (when complete and
correct) the set of LIGR’s 1−31 is closed under F and therefore by Theorem ??
these are sufficient to derive all the IRR’s from the IRR(2).

7 Return to the IGR’s and their significance

The IGR’s in Table ?? can be expressed in a more organised way in the Ta-
ble ??. Importantly the LIGR’s involved on the left hand side and obtained
from the computer calculation, agree with the very long calculation in the
preceding section summarised in Table ??.

The following is the table of the distinct RIGR’s in Table ?? with the α
values put back in and the redundant symbols T2 representing arbitrary strings
removed.

Table 7: The set of RIGR’s

1a→ 2b 1b→ 3 b 1c→ 1b 1ca→ 2bb 1cabab→ 3b5

1cababa→ 3 bababa 1cababc→ 3bbbbbc 1cabc→ 1bbbb 1cc→ 1bb 2a→ 3b
2b→ 2c 2bc→ 3 bc 2bbc→ 1 abc 2cc→ 1bb 3b5a→ 3 bababa
3cba→ 3bbb 3b→ 1 a 3bbb→ 1 aba 3bbbb→ 3 baba 3bbbbbb→ 3 bababa
3cbb→ 3bbb 3cb→ 2bb 3c→ 3c 3cba→ 3bbb 3cbab→ 3 baba

Developments in the analysis techniques for non-terminating Turing Machines 51

Table 8: The table of IGR’s (Table ??) re-expressed in terms of LIGR’s and
RIGR’s

α LIGR RIGR

b

1T1 ← 1cT1
2T1 ← 1aT1
3T1 ← 2aT1
1caT1 ← 2acdT1
1ccT1 ← 1abcT1
1caaT1 ← 1abadT1
1cabcT1 ← 2accdcT1
1cababT1 ← 1abbccbT1
1cababcT1 ← 1abbccacT1

1 T2 → 3 bT2
3 T2 → 1 aT2

c 3T1 ← 3cT1
1 aT2 → 2bbT2
3 babT2 → 3 babaT2

c 2T1 ← 2bT1

1 cT2 → 1bbT2
3 baT2 → 3bbbT2
3 babT2 → 3 babaT2
1 ababaT2 → 3 bababaT2

a 1T1 ← 3T1d
1T2 → 2T2b
2T2 → 3T2b
3T2b

5 → 3T2bababa

c 1T1 ← 2T1c

1T2 → 1T2b
3T2 → 3T2c
2T2b → 3T2bc
2T2c → 1T2bb
2T2bb → 1T2abc

b 3T1 ← 1T1b

2T2 → 2T2c
3T2c → 2T2bb
3T2bb → 1T2aba
3T2cb → 3T2bbb
3T2bbb → 3T2baba
3T2bbbbb → 3T2bababa

c 1ccT1 ← 2bbcT1

3 babT2 → 3 babaT2
1 ababT2 → 3b5T2
1 ababaT2 → 3 bababaT2
1 ababcT2 → 3bbbbbcT2

c 1caT1 ← 3ccdT1

1 abcT2 → 1bbbbT2
3 babT2 → 3 babaT2
1 ababaT2 → 3 bababaT2

c

1caaT1 ← 2bbadT1
1cabcT1 ← 3cccdcT1
1cababT1 ← 2bbbccbT1
1cababcT1 ← 2bbbccacT1

3 babT2 → 3 babaT2
1 ababaT2 → 3 bababaT2

c 3T1bbb← 2T1adbc 3T2 → 3T2c

a 3T1bbb← 3T1adbd
3T2cb → 3T2bbb
3T2b

5 → 3T2bababa

Notice that the complete Table ?? consisting of 11 blocks has the property

52 John Nixon

that within each block every LIGR combines with every RIGR to form an
IGR. Here the LIGR is CS1 ← CS3 and the RIGR is CS2 → CS4 i.e. the IGR
is CS1→→ CS2⇒ CS3→→ CS4 provided CS1→→ CS2 has the type LRL or
RLR. The last condition is automatically satisfied because within each block
in Table ?? CS1 and CS2 both have the pointer on the same side (and strings
T1, T2).

The result with IGR’s 4, 5, 14, 15 omitted (corresponding to 8.1 and 9.1 in
block 1, and 3.2 and 4.2 in block 9 of Table ??) occurred when the program
was run with n = 9. In this case the incomplete Table ?? does not have the
above property.

Can the IGR’s be obtained directly (based on applying the process called
F directly starting from the single TM steps) or based on the LIGR’s without
first obtaining the IRR’s to a length unknown beforehand as was done in the
computer program [?]? Note that this computer algorithm is very inefficient.

It follows from the fact that each IGR has two independent parts (its LIGR
and its RIGR) once the value of α is fixed that if w and x are LIGR’s, and y

and z are RIGRs, all with the same value of α that

(w, y), (x, y), (w, z) ∈ IGR⇒ (x, z) ∈ IGR (76)

again with the same value of α and where the ordered pairs of an LIGR and
an RIGR are combined to give IGR’s as above i.e.

Theorem 7.1. given that (w, y) ∈ IGR, any LIGR x such that (x, y) ∈ IGR

can be paired with any RIGR z such that (w, z) ∈ IGR to give another result
(x, z) ∈ IGR, again with the same value of α, thus the structure of Table ?? is
general.

7.1 Attempts to find all the IGR’s using a method sim-
ilar to the way the LIGR’s were found.

In this method all possible sequences of IGR’s currently known are considered,
starting with all the IGR’s needed to obtain the set IRR(2) which are labelled
1 − 8 in (??). They are combined with · defined above, and F is applied to
the resulting IRR pattern on its RHS to generate a new IGR (after removing
redundant symbols). At the same time the table of the relation “can possibly
be preceded by” (??) for IGR’s is kept up-to-date to facilitate this. The
summary of the results is given in Figure ?? where the IGR’s 9 − 22 are
derived by this method but the calculation came to an end when it was clearly
incomplete with only 25 IGR’s out of the 55 obtained in Table ?? with not all
the LIGR’s in (??) being involved. This is related to the fact that there were
no IGR’s that could precede IGR’s 1, 4, 5 in (??).

Developments in the analysis techniques for non-terminating Turing Machines 53

1 context {(a, a), (b, a)}3T1 →→ 1 T2
b⇒ 2aT1 →→ 3 bT2

2 context {(c, c)}2T1 →→ 1 T2
b⇒ 1aT1 →→ 3 bT2

3 context {(b, b)}1T1 →→ 3 T2
b⇒ 1cT1 →→ 1 aT2

4, 5 context {(c, b)}1T1 →→ 1T2

{ a⇒ 3T1d→→ 2T2b
c⇒ 2T1c→→ 1T2b

6 context {(a, b)}1T1 →→ 2T2
a⇒ 3T1d→→ 3T2b

7 context {(c,)}3T1 →→ 3T2c
b⇒ 1T1b→→ 2T2bb

8 context {(a,), (b,)}3T1 →→ 1 aT2
c⇒ 3cT1 →→ 2bbT2

a context {(c,)}2T1 →→ 1 cT2
c⇒ 2bT1 →→ 1bbT2

b context {(a,)}1T1 →→ 2T2b
c⇒ 2T1c→→ 3T2bc

b′ 1T1 →→ 2T2bb
c⇒ 2T1c→→ 1T2abc

9 2T1 →→ 3 T2
b⇒ 1aT1 →→ 1 aT2

10 2T1 →→ 3 bT2
c⇒ 2bT1 →→ 2bbT2

10′ 2T1 →→ 3 baT2
c⇒ 2bT1 →→ 3bbbT2

11 1T1 →→ 1 T2
b⇒ 1cT1 →→ 3 bT2

12 3T1 →→ 2T2
b⇒ 1T1b→→ 2T2c

13 3T1 →→ 3T2b
b⇒ 1T1b→→ 3T2ba

13′ 3T1 →→ 3T2bb
b⇒ 1T1b→→ 1T2aba

14 3T1 →→ 3T2b
3 b⇒ 1T1b→→ 3T2baba

15 1caT1 →→ 3 T2
b⇒ 2acdT1 →→ 1 aT2

16 1T1 →→ 2T2c
c⇒ 2T1c→→ 1T2bb

17 2T1 →→ 1 aT2
c⇒ 2bT1 →→ 2bbT2

18 3T1 →→ 3T2cb
b⇒ 1T1b→→ 3T2bbb

19 1T1 →→ 3T2b
3 a⇒ 3T1d→→ 3T2baba

20 1T1 →→ 3T2
c⇒ 2T1c→→ 3T2c

21 1caaT1 →→ 1 T2
b⇒ 1abadT1 →→ 3 bT2

22 1caT1 →→ 1 abaT2
c⇒ 3ccdT1 →→ 3bbcbT2

(77)

Later it became clear that the contexts for the IGR’s generating the IRR(2)
are needed as well and the results of this second attempt are also shown here.
This resulted in IGR’s a, b and b′, 10′ and 13′ being generated as well as IGR’s
9 − 22 with the exception of IGR’s 10 and 13 that only belonged to the first

54 John Nixon

1/{9, 10′}.
2/3→ 15.
3/11.
4/12→
5→
6/13′.
7/{6, b′}.
8.
a.
b.
9/11→ 1→
10.
11/3→ 9→ 1/15→
12/{6, 16} → 4→
13′.
14.
15/{2, 17}.
16→ 12→ 4

17.
18/{19, 20} → 6→ 12→ 4. ∗∗
19.
20.
21/3.
22.

Figure 2: Map of the derivation of the IGR’s using notation similar to that
of Figure ??. A full stop means that no RCS’s are present. Thus no other
preceding IGR’s can give any more results.

Developments in the analysis techniques for non-terminating Turing Machines 55

attempt. The relation “can possibly be preceded by” is as follows

2 15

3 2, 11, 18, 21
6 7, 12
9 1, 20
10′ 1

11 3, 9
12 4

13′ 6

14 6

15 3, 11
16 12

17 15

18 6

19 18

20 18

21 3

22 3

(78)

7.2 More on the relationships between IRR’s, IGR’s
and LIGR’s

In this section, methods are illustrated for (1) finding IGR’s having a given
LIGR, (2) checking that LIGR’s are not vacuous, which can lead to an alter-
native descriptions of the behaviour of a TM. The discrepancy between the
LIGR’s associated with ?? and ?? for TM (??) is resolved.

Consider the derivation of IGR 7 of Table ?? i.e.

1ccT1 →→ 1 T2
b⇒ 1abcT1 →→ 3 bT2 (79)

This IGR first appears in the table of IRR’s with the context (cb, abab) giving

the full form 1cccbT1 →→ 1 ababT2
b⇒ 1abccbT1 →→ 3 bababT2, which

can be derived by successively applying F giving the following sequence of IRR
patterns which can be traced back using F−1 described at the end of Section ??:

1bT1 →→ 3 bT2
1cbT1 →→ 1 abT2
1ccbT1 →→ 3 babT2
1cccbT1 →→ 1 ababT2
1abccbT1 →→ 3 bababT2

(80)

The non-redundant forms of the IGR’s for these steps are respectively 1T1 →→
3 T2

b⇒ 1cT →→ 1 aT2 with context (b, b) i.e. IGR 3, 1T1 →→ 1 T2
b⇒

56 John Nixon

1cT→→ 3 bT2 with context (cb, ab) and IGR 3 again with context (ccb, bab),
and (??) with context (cb, abab). Note that (??) cannot be derived from these
reduced forms unless these contexts are known beforehand. That is, (??) can
only be found once the IRR pattern 1cccbT1 →→ 1 ababT2 has been found in
the IRR’s.

Consider another example. When an origin that starts with 1cc has been
found in an IRR pattern such as 1ccbT1 →→ 3 babT2. Then F can be applied

to this giving
1cccb

1abcb

}
T1 →→ 1ababT2 and 2bbcbT1 →→ 3 babaT2 with α =

b, c respectively. The results are reduced to minimal form by removing symbols
that are not involved in the computation, then the original string might remain
intact. In this case it gives the IGR’s

1T1 →→ 3 T2
b⇒ 1cT1 →→ 1 aT2

1ccT1 →→ 3 T2
b⇒ 1abcT1 →→ 1 aT2

1ccT1 →→ 3 babT2
c⇒ 2bbcT1 →→ 3 babaT2

. (81)

two of which contain the 1cc on the left. Thus this method can generate IGR’s
that have a given LIGR by taking its LHS at the start.

A very similar approach can be used to check that all the LIGR’s in (??)
have matching IGR’s from which it can easily be checked whether or not they
are actually used in IRR’s, because some of them were not verified in the
computer output in Table ??. These were the LIGR’s (after knocking off the
arbitrary string T) with LHS’s

3b5a, 3b5b, 3b3b. (82)

To do this two definitions will simplify the presentation.

Definition 7.2. A logically valid IGR is non-vacuous if and only if there is
a combination of the symbol strings T1 and T2 that makes it match an IRR of
extendable type of the TM in its LHS and an IRR of the TM on its RHS.

If this is not true it means that the IGR is in practical terms useless al-
though it is still a valid logical statement. Examples will be found below.

Definition 7.3. An LIGR is non-vacuous if and only if there is an IGR
that contains it (in the sense of Section ??) that is non-vacuous.

Therefore for every non-vacuous IGR and LIGR there is a unique parameter
(q) which is the length of the shortest IRR that can be derived using them.
The finite values of this parameter were obtained for the LIGR’s in Table ??
by comparing them with the list of IRR’s obtained from the computer output
and searching with a text editor.

Unfortunately it is conceivable that an IRR matches an LIGR without it
being non-vacuous. It could happen if the IGR including some of its context

Developments in the analysis techniques for non-terminating Turing Machines 57

matches the IRR. Then when it the extended IGR is reduced to shortest form
i.e. an IGR then it might no longer contain the LIGR so the LIGR has not
been proved to be non-vacuous.

3b5d→ 3 bababa


d→ 1 (ab)3a


a→ 1 aba|ababa(1aab→ 1 aba)
b→ 3 ba|bababa(3bd→ 3 ba)
c→ 3 bababa|ba(3cdbaba→ 3 bababa)

c→ 3 baba|aba(3cbab→ 3 baba)
(83)

1aab→ 1 aba

3bd→ 3 ba

3cdbaba→ 3 bababa

3cbab→ 3 baba

(84)

For example to do this for the LIGR 3Tbbb ← 3Tadbd start by trying to
construct the IRR pattern X on the left of the IGR. It must start from some CS
of the form 3Tbbb. Going forward with the computation 3 steps gives 1Taba.
Making the rightmost symbol in T = a i.e. T = T′a allows the computation
to continue to 1T′abaa in 5 steps (which can be repeated because the result
matches 1Taba) while 1T′baba → 3T′baba = 3T(2)dbaba → 1T(2)ababa in two
steps (which can also be repeated). Also with T = T′c it continues to 3T′bbcb .
This ending at the right is required for X to be an extendable IRR which is in
this case 3T′cbbb→→ 3T′bbcb . Now applying F with α = b gives 1cbbbb→→
3b5 having length 5. This is the required IRR when the redundant symbol
T′ has been removed and is clearly the shortest one possible. The repeatable
rules are (when reduced to the shortest forms) 1aab → 1 aba which iterates
to 1anaab → 1 aban+1 and 1db → 1 ab which iterates to 1(db)n → 1 (ab)n

and 3cbaba
9→ 3 babaa which iterates to 3cn−1cbaba → 3 babaan . These

results can be represented compactly as follows where the new symbols at the
pointer needed are given above the arrows, and optionally the number of TM
steps in parentheses and a number in parentheses after a CS denotes the length
of the symbol string involved when a match with a previous CS substring has
occurred and in the computation the pointer does not go beyond this substring
so it can be repeated indefinitely.

3bbb
3→ 1 aba



a(5)→ 1 aba|a(1aab→ 1 aba)

b→ 3 b|aba

{
d→ 1 a|baba(1db→ 1 ab)
c(9)→ 3 baba|a(3cbab→ 3 baba)

c→ 3bbcb (??)

(85)

58 John Nixon

1aab
5→ 1 aba

1db→ 1 ab

3cbab→ 3 baba

. (86)

1cabab→ 3b5

{
d→ 3 bababa()
c→ 3b5|c (3c→ 3c)

(87)

3cdac→ 3bbbc

3cdbad→ 3b5

3c→ 3c

2b→ 2c

2bca→ 2bbb

1c→ 1b

3c→ 3c

(88)

By putting the extra symbol c on the right, most of the results can just
be copied from above, but the condition for the repetition works out slightly
differently because the first CS 3b5 does not appear.

1cababc
c→ 3b5c


d→ 2b5|bb


a→ 3b7|b


d→ 1 a(ba)4(??)
c→ 3b5bbb|c

(
3c→ 3c ,
3cdac→ 3bbbc

)
b→ 2b7|c (2b→ 2c)
c→ 3 (ba)3bc(??)

c→ 3b5c|c (3c→ 3c)
(89)

1cabc→ 1bbbb



a→ 2b5


a→ 3b6

{
d→ 1 a(ba)3(??)
c→ 3b6|c (3c→ 3c)

b→ 2b5|c (2b→ 2c)
c→ 3 bababc(??)

b→ 3 babab(??)
c→ 1b4|b (1c→ 1b)

(90)

1caa→ 3bbb

{
d→ 3 baba(??)
c→ 3bbb|c (3c→ 3c)

(91)

1ca→ 2bb


a→ 3bbb

{
d→ 3 baba(??)
c→ 3bbb|c (3c→ 3c)

b→ 2bb|c (2b→ 2c)
c→ 1 abc(??)

(92)

Developments in the analysis techniques for non-terminating Turing Machines 59

2acd→ 2bbb

2bca→ 2bbb
(93)

1cc→ 1bb



a→ 2bb|b


a→ 3b3|b

{
d→ 1 ababa(??)
c→ 3b4|c (3c→ 3c)

b→ 2bbb|c (2b→ 2c)
c→ 3 babc(??)

b→ 3 bab(??)
c→ 1bbb (1c→ 1b)

(94)

This method can be applied starting with each state and symbol pair to
generate the following results in the form of trees. The hope was to be able
to join all these up so that where F needs to be invoked the logic can pass
to another tree, but there is problem with “carries” i.e. strings of symbols or
context that needs to be carried to the next tree and added for the computation
to be followed. Only when the TM is going effectively in a single direction
because of a repeating condition can these be ignored. Clearly this method
can, if all the repeating cycles are picked out, produce all of these starting from
the simplest single step and single symbol cases to the more complex case in
equation (??), but it cannot make sense of a big cycle, if there is one, without
somehow abstracting away the effect of these “carries”.

The effect of “carries” is to cycle round within a single tree because the
trees are designed to be closed under the effect of extra symbols added unless
it results in a change of direction.

A single tree gives a recursive definition of all the IRR’s that can be ob-
tained from the given LHS of the LIGR that motivated their construction and
so allows a proof of the existence or non-existence of IRR’s generated by the
LIGR.

In the connected diagram write just the endpoints after the change of di-
rection.

A branch can end because of three conditions, (1) a repetition or loop
(indicating that there is no point in continuing) because a substring in the
same branch has been developed before and (2) a reference to a loop. This is
indicated by the loop label (a greek letter) and an asterisk and (3) when the
computation from the same CS appears on another branch. If the computation
ends in a subset of a CS previously developed, the extra symbol(s) need to
be added resulting in another subtree. A very simple case follows. To get
the results for 3b|b from those for 3|b (ϵ an extra b must be put on the
left. The first branch gives rise to the loop δ going left and the added b gives
3bba→ 1 aba and in its new location it gives rise to a new loop 1aad→ 1 aba.
The branch to 3b|c going to the loop θ going to the right, gives this same loop
after the b is added on the left because the extra symbol is added on the left.

60 John Nixon

If the new symbol is added on the opposite side to the direction of travel in
a cycle of the loop the same loop with be obtained after the symbol is added,
but not otherwise.

How to handle reversals of direction add the extra symbol to extend the
tree as above or start a new one? a reversal of direction so that the pointer
is on the other side of the string. In this case the computation continues on
another tree because every possible state and symbol pair (accounting for all
possible cases) is at the root of a tree

Another example is how the development of 2|bb is obtained from that
of 2|b . Putting a b on the left gives the first result 1baba → 3 baba. This
results in two loops because both starting points 3cbad and 3bbbd match the
endpoint 3 baba. This is indicated by 3cbad → 3bbbd → 3 baba. The other
cases are very easy. Note that the | has no meaning unless each symbol is
added one at a time so they are omitted if this does not happen.

In case (1) in what follows the numbers in typewriter font represent different
repeating conditions. The number is the length l of the string over which a
repetition can occur. This includes the symbol added so it is always ≥ 1 and
if l = 1 there is no symbol string to be matched. The repeating condition is
where the state, pointer position (right or left) and the symbol string match
between a CS and another CS that is in the path to it from the root of the tree.
Between these two CS’s the pointer moves in a range. A repetition also requires
every symbol in the second CS in the range to match the corresponding string
from the first CS.

In case (2) a branch ends because the computation (taken as far as possible)
goes in the opposite direction. This is indicated by an italicised identification
number. These numbers are also repeated where a matching CS appears in
another tree from where the computation can continue.

1



a→ 2|b


a→ 3b|b (ϵ)

{
d→ 1 aba(1aad→ 1 aba)
c→ 3bb|c (θ∗)

b→ 2b|c (ζ∗)
c→ 3 bc|(β∗)

b→ 3 b|



d→ 1 a|b(1db→ 1 ab)

c→ 2|bb (α)


ad→ 3 b|aba(3cbad→ 3bbbd→ 3 baba)
ac→ 3bbb|c (θ∗)
b→ 2bb|c (ζ∗)
c→ 1 abc|(η∗, ignore x)

c→ 1|b (1c→ 1b , γ)

(95)

Developments in the analysis techniques for non-terminating Turing Machines 61

2



a→ 3|b (ϵ)

{
d→ 3 ba|(δ∗)
c→ 3b|c (θ∗)

b→ 2|c (2b→ 2c , ζ)

c→ 1 c|


d→ 3 bc|(β) x=a,b,c→ 1 abc(η)



a→ 1 aba|c(1abb→ 1aab→ 1bba→ 1 aba)

b→ 3 b|abc


(x = d, 3bd→ 3 ba)
d,x=c→ 1 a|babc(1db→ 1 ab)
c,x=c→ 3 baba|c(3cbab→ 3 baba)

c→ 1b4 (γ∗)
c→ 1bb (γ∗)

(96)

3


d→ 1 a|


a→ 3|bb (ϵ∗)
b→ 3 b|a(3bd→ 3 ba, δ)
c→ 2|bb (α∗)

c→ 3|c (3c→ 3c , θ)

(97)

Do the results (??),(??) and (??) adequately characterise TM (??)?

By taking the longest results of the repeating cycles on the RHS’s of
(??),(??) and (??) i.e. 1 aba, 3 baba and adding every symbol in turn gives
1aaba→ 1 abaa, 1aabaa→ C, 1babaa→ E, 1cabaa→ 3b5 , 1baba→ 3 baba, 3ababa→
A, 3bbaba→ A, 3cbaba→ E, 1caba→ 2bbbb where I am using the capital let-
ter notation for pseudo-states in (??). Another round of this will generate all
the results of (??).

1a→ 2b


a→ 3b|b

{
d→ 1 aba(??)
c→ 3bb|c (3c→ 3c)

b→ 2b|c (2b→ 2c)
c→ 3 bc(??)

(98)

1b→ 3 b


d→ 1 a|b


a→ 1 aba|(1aab→ 1 aba)
b→ 3 b|ab(3bd→ 3 ba)
c→ 2bbc (??)

c→ 2|bb (??)

(99)

62 John Nixon

1c→ 1b



a→ 2b|b


a→ 3bb|b

{
d→ 3 baba|(??)
c→ 3bbb|c (3c→ 3c)

b→ 2bb|c (2b→ 2c)
c→ 1 abc(??)

b→ 1 ab(??)
c→ 1b|b (1c→ 1b)

(100)

2a→ 3b

{
d→ 3 ba(??)
c→ 3b|c (3c→ 3c)

(101)

2b→ 2c



a→ 3c|b


d→ 3|bbb

{
d→ 3 baba(??)
c→ 3bbb|c (3c→ 3c)

c→ 3cb|c (3c→ 3c)
b→ 2c|c (2b→ 2c)

c→ 1|bb



a→ 2bb|b


a→ 3b3|b

{
d→ 1 ababa(??)
c→ 3b4|c (3c→ 3c)

b→ 2bbb|c (2b→ 2c)
c→ 3 babc(??)

b→ 3 bab(??)
c→ 1bb|b (1c→ 1b)

(102)

Developments in the analysis techniques for non-terminating Turing Machines 63

2c→ 1 c



a→ 3 bc|



a→ 1 a|bc


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(3ba→ 3 ba)
c→ 1b4 (??)

b→ 1 a|bc


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(3bb→ 3 ba)
c→ 1b4 (??)

c→ 1 abc|


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(no rep but treat as above)
c→ 1b4 (??)

b→ 3 b|c



a→ 1 a|bc


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(3ba→ 3 ba)
c→ 1b4 (??)

b→ 1 a|bc


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(3bb→ 3 ba)
c→ 1b4 (??)

c→ 1 abc|


a→ 1 aba|c(1aab→ 1 aba)
b→ 3 b|abc(no rep but treat as above)
c→ 1b4 (??)

c→ 1bb (??)
(103)

This can apparently be continued indefinitely and is equivalent to Table ??.
In this case it arises just from the method illustrated starting on the top of
page 59. When this has been checked carefully probably this paper can be
drastically shortened.

3d→ 1 a


a→ 3bb (??)

b→ 3 b|a

{
d→ 1 a|ba(1db→ 1 ab)
c→ 3bbb (??)

c→ 2bb (??)

(104)

3c→ 3c


d→ 2|bb


a→ 3bb|b

{
d→ 3 baba(??)
c→ 3bbb|c (3c→ 3c)

b→ 2bb|c (2b→ 2c)
c→ 1 abc(??)

c→ 3c|c (3c→ 3c)

(105)

It may also be interesting to look at the relationships between the repeti-
tions as the result of the computation. The distinct repetitions found in the

64 John Nixon

(??)

��

(??)

��
(??) // (??) //oo

&&

(??)oo

ss
(??)

OO

(??)

ff 88

//oo (??)oo

Figure 3: relationships between the ‘trees’

c

(3c→ 3c) //

��

b

(2b→ 2c)oo

(1db→ 1 ab)
c

(1c→ 1b)

OO

a

(1aad→ 1 aba)

44

// (3bd→ 3 ba)oo

OO

//

33

c

(3cbab→ 3 baba)

kk

Figure 4: A schematic summary of the results in the ‘trees’. The parentheses
are loops that repeat if certain symbol combinations repeat. This is an attempt
to describe the complete algorithm of TM (??). There are other connections
from the first part to the second part which seems to coincide with Table ??.
The labels (next symbol seen) on the arrows are above the arrows if viewed
such that the arrow goes to the right.

results (??) to (??) are
(1) 3c→ 3c

(2) 2b→ 2c

(3) 1aab→ 1 aba

(4) 3bd→ 3 ba

(5) 1c→ 1b

(6) 1db→ 1 ab

(106)

The results in the ‘trees’ can be perhaps found more simply by starting
just with each state (instead of state and symbol pairs) and matching going
either way.

Developments in the analysis techniques for non-terminating Turing Machines 65

8 Formulating the condition for a repetition

In these trees if on any branch, the final CS matches an earlier CS in such
a way that the loop can be repeated (this might work after some symbols
not involved in the loop itself are ignored) then the algorithm terminates the
branch because continuing is a special case of what has already been done. If
this happens, all the CS’s that match the final CS should be listed in order
in parentheses, so that many other results of the TM can be found easily.
Suppose

CS1
α1→ CS2

α2→ . . . (107)

is such a branch that ends in a repeating loop and the pointer is at the right
in each CS where CSi has length i and in step i from CSi to CSi+1 the pointer
reaches and uses r(i) symbols (this excludes the last symbol arrived at that is
not yet read). CS1 is a CS of length 1 with the pointer on the right and is just
one TM step away from the root which is a state and symbol pair. After l2−1
steps in (??) giving a CS of length i = l2 what is the condition for a repetition
of an earlier CS of length i = l1? This involves l2 − l1 steps in (??).

Because the symbols are added on the right, the tape positions will be
counted going to the right and the leftmost position is position 1 in all the CS’s.
The pointer starts at l1+1 and first goes to l1+2 via l1− r(l1)+2 (the symbol
positions used go from l1 − r(l1) + 2 to l1 + 1 i.e. a segment of length r(l1)).
The complete potentially repeating computation reaches the following extreme
pointer positions in this order l1+1, l1+2− r(l1), l1+2, l1+3− r(l1+1), . . . l2
because in the final step to get CSl2 the pointer does not go beyond l2. The
range of the tape affected by the computation is from position p to l2 inclusive
(see Figure ??) where

p =
min

l1 ≤ i ≤ l2 − 1
{i + 2− r(i)} . (108)

The repeating condition implies that the states match between the start and
end of the computation and there is a pair of matching substrings of m symbols
in the two CS’s such that each substring lies within the range p to l2 and
must include all the symbols in that range on the left hand end otherwise the
computation could not be repeated due to a mismatch. Therefore p = l1−m+1
is the leftmost symbol position involved in the matching i.e. m = l1 − p + 1.
The length of the potentially repeating rule is the length of tape involved in
(??) i.e. t = l2 − p + 1. Therefore t −m = l2 − l1 ≥ 1. One of the shortest
possible examples is 3c→ 3c . If there are no other symbols on the left, l1 = 0
and l2 = 1 and p = 1 therefore m = 0 and t = 1 so in general t > m ≥ 0.

In the results (??) to (??) the notation | was introduced in the CS’s to
indicate the limit beyond which the pointer did not go to obtain the CS from
the preceding one. This is a visual indication of r(i) which is the number of
symbols between | and the end of the string where the symbol is, where i is
the length of the preceding CS.

66 John Nixon

i + 2− r(i) r(i) i

4 2 4 x x x x

3 4 5 x x x | x x

5 3 6 x x | x x x x

8 1 7 x x x x | x x x

minimum: p = 3 8 x x x x x x x | x

↑

Figure 5: A schematic example of a repetition (states omitted). Here
l1 = 4,l2 = 8, and p = 3 therefore m = 2 and t = 6 and the repeating rule
has the form x̂xxxxx→ xxxxx̂x where the x’s represent any symbols, and the
’s are where the symbols are added at the pointer position. The strings of
symbols under the widehat ̂must be the same. These are the m symbols that
are repeated. The ↑ is where p = 3 giving a visual indication of the end of
range of the symbols that are involved in the repeating computation rule.

The different end points are also related by a graph expressing the relation
“is followed by” which is as follows:
1 → 2 , 2 → {3 , 7 , 8 , 10}, 3 → {7 , 10}, 4 → {8 , 10 , 11}, 5 → {4 , 10 , 11}, 6 → {3 , 4}
, 7 → 3 , 8 → 10 , 9 → 1 , 11 → {3 , 8}, 12 → 7
An appropriate way to understand what this tells us about the computation is
probably to first deal with the strongly connected subgraph consisting of 3 , 7
then add to it other related repeating conditions such as 8,10 etc.

The endpoints of the trees that are not endpoints of cycles are the result
of a change of direction of the TM and the repeated action of a cycle of the
TM indicated by an endpoint that is a repeating condition. The connection
between these endpoints and cycles needs to be made manifest.

[There is however a limitation to completely ignoring the RHS’s which is
that IGR’s could be generated (vacuous IGR’s) which can never be used in
practice. To ensure this does not happen i.e. that W in non-vacuous, the LHS
of the IGR W must be an IRR pattern that matches an IRR of extendable type
say X because then W can be applied to X giving another IRR Y, (which of course
assumes that the logic of W is correct). Therefore such an LIGR W∗, the LIGR
associated with IGR W, will also be called non-vacuous. This condition will be
followed up later and reduces the set of LIGR’s generated by Algorithm ?? to
those that are non-vacuous, and will be applied later in section ??.]

Returning to (??), and proceeding with the shortest of these by going
forward with the computation to try to generate an extendable IRR gives
3b3b →→ 3 baba showing that this is not possible because the pointer ends
up at the left showing that the IRR generated has type RLL and so is non-

Developments in the analysis techniques for non-terminating Turing Machines 67

extendable, so an extendable IRR involving this needs at least one more symbol
on the left. By adding each possible symbol on the left, and recording the
rightmost position of the pointer (r) in each result gives 3dbaba → 1 ababa

(r = 1) and 3cbaba
9→ 3 babaa (r = 4) showing that this applies again.

One more time gives 1aababa → 1 abaaba (r = 3), 1bababa → 3 bababa

(r = 1), 1cababa → 3b5 (r = 6). This time each of the results gives rise to
a final CS X which is a subset (having extra symbols) of a CS Y such that in
computation leading to the X there is another CS that is also a subset of Y
where the pointer does not go beyond the symbols in Y to carry out the final
computation. This is the condition (C) that there is no point in continuing the
forward computation any further because once the computation from Y to X

has been found (expressed in its shortest form) it can be applied again, and so
on indefinitely. In the first example 1 ababa→ 1 abaaba we have Y = 1 aba.
It is often but not always the case that X is a subset of Y, which condition
guarantees that condition C holds, but it does not hold in general as in this
example. Once condition C has been found, the computation terminates and
the length of the minimal string over which the computation happens is written
in parentheses. If however the original computation continues to the opposite
end of the string so that an extendable IRR results, the result of F applied to
this can be shown.

3b3b→ 3 baba


d→ 1 ababa


a→ 1 abaaba(3)
b→ 3 bababa(2)
c→ 3 bababa(6)

c→ 3 babaa(4)

(109)

Doing this again gives nothing new when shortened to the shortest forms
which are, (with the number of TM steps above the arrow) as follows with the
maximum value of r = 6.

1aab
5→ 1 aba

1db→ 1 ab

3cdbaba→ 3 (ba)3

3cbab
9→ 3 baba

. (110)

Because of this closure, the these results can be written in Table ?? in
which the 5 CS’s at the head of the columns behave like pseudo states. This
maximum value of r indicates that the maximum number of TM steps to
the right the pointer goes to complete one of these cycles is one less i.e. 5
because it starts at position 1 i.e. the pseudo states have length 5. Four of
these (A,B,D and E) were obtained from the either side of the results in (??)
and C came by carrying out the next cycle in detail and just indicated in
words in this paragraph. The sufficiency of the set of 5 (coincidentally) pseudo
states is confirmed by the closure indicated in Table (??). The body of the

68 John Nixon

table indicates the state transitions as a result of each new symbol read, and
the steps all involve moving left by one space so it is effectively a finite state
machine. Also note that starting with the other CS’s in (??) gives the same
results because 3b5d → 3 bababa and the first stage of the calculation above
gives the same results when expressed in the shortest form.

Table 9: A finite state machine going left derived from TM ??

A: 1 ababa B: 1 abaab C: 1 abaaa D: 3 babab E: 3 babaa

a→ B a→ C a→ C a→ A a→ A
b→ D b→ E b→ E b→ A b→ A
c→ D c→ D c→ D c→ D c→ E

This argument shows that the IGR’s sought do not exist, therefore the
LIGR’s starting with the LHS’s in (??) are vacuous and should not be listed.
As a result of this, the set of LIGR’s derived by hand according to the method
above in Section ?? with this modification, and the computer results in Ta-
ble ?? based on IGR’s now agree.

This also shows that the entry into any of these 5 CS’s, the pseudo states, is
the criterion by which the TM is certain to remain in this finite state machine
behaviour indefinitely. If this has not yet been reached, it might be possible
that this type of behaviour could be avoided and it can happen indefinitely
with some of the results below being examples of this where the TM moves
to the right. Note the similarity of this with the results of the next section
(Section ??) derived by a different method.

According to Figure ?? this procedure for checking the LIGR’s for being
vacuous could have been done after the first stage of analysis of LIGR’s 1 and
2 with a single application of F because instead of waiting till they were all
found, saving much time, only one of LIGR’s 15− 19, one of 24− 25, and one
of 26− 27 needs to have been found.

It is easy to show other cases where an unending iteration can occur by
applying a very similar method to the other LHS’s of LIGR’s in (??). The
results are as follows, each for all n ≥ 0:

1ccn → 1bn+1

1b2nb→ 3 b(ab)n

3ccn → 3cn+1

3b2n+1b→ 3 (ba)n+1

2bbn → 2cn+1

. (111)

Also, the results (??).1, 6 can be similarly iterated to give

1anaab→ 1 aban+1

3cn−1cbab→ 3 baban+1 (112)

respectively. As might be expected from above, each of the cases in (??) gives
rise to some CS’s that cannot be the LHS of some non-vacuous LIGR but these

Developments in the analysis techniques for non-terminating Turing Machines 69

are not already in the set of LIGR’s found. To show how these relationships
can work a very simple example worked out in detail follows. Starting from
1ca → 1ba → 2bb it follows that 1ca cannot be the LHS of a non-vacuous
LIGR but in could possibly happen with extra symbol(s) on the right. With
a it gives 2bba → 3bbb showing that the same holds for 1caa and likewise
2bbb → 2bbc showing that the same holds for 1cab. The latter case can be
reduced to just 2b→ 2c iterating to give the last member of (??), however it
is not the case that it is clear that every extension of 1ca by a symbol on the
right will give other examples of CS’s which cannot be LHS’s of non-vacuous
LIGR’s. This did happen in the reasoning leading up to Table ?? because of
the closure.

Because Table ?? as well as the iterations in (??) describe aspects of the
behaviour of TM ?? it was interesting to try to join all these up into a more
comprehensive description of TM ?? which can at least in part be done as
follows:

1c→ 1b



a→ 2bb
b→ 1 ab

c→ 1bb



a→ 2bbb
b→ 3 bab

c→ 1bbb



a→ 2b4

b→ 1 abab

c→ 1b4


a→ 2b5

b→ 3 babab→ Table ??.D
c→ 1b5

(113)

1b2n



a→ 2b2n+1 → (??)
b→ 3 b(ab)n ∈ T9.D if n ≥ 2

c→ 1b2n+1


a→ 2b2n+2 → (??)
b→ (??).2
c→ 1b2n+2 → (??)

(114)

70 John Nixon

2b2n



a→ 3b2n+1

{
d→ 1b2nba→ 3 b(ab)na if n ≥ 2→ T9 (??).2
c→ 3b2n+1c

d→ 2b2n+3 → (??)

b→ 2b2nc



a→ 3b2ncb



d→ 1 (ab)n+1 ∈ T9.A

c→ 3b2ncbc


d→ 2b2ncbbb


a→ 3b2ncb4

b→ 2b2ncb3c
c→ 3 (ba)n+2 ∈ T9.E

c→ 3b2ncbcc

b→ 2b2ncc


a→ 2b2n+2c ∈ (??)
b→ 2b2ncbb
c→ 3b2nc3

c→ 1b2n+2 → (??)
c→ (??).2 if n ≥ 3

(115)

3cn+1

{
d→ 2cnbb
c→ 3cn+2 ∈ (??)

(116)

2cn+1


a→ 3cn+1b
b→ 2cn+2 ∈ (??)
c→ 1cnbb

(117)

3cn+1b


d→ 3cnb3

{
d→ 3cn−1cbab

(??).2→ 3 baban+1 ∈ Table ??.E if n ≥ 0
c→ 3cnb3c

c→ 3cn+1bc

(118)
After spending some time doing this which seemed never ending, I noticed that
the results in (??) or originally based on (??), can mostly be continued either
by single TM steps to the left or other members of (??) and the exceptions
to this would be interesting. For example the computation in (??).1 can be
continued if another symbol (call it α) is given at the pointer giving these
results when reduced to shortest form: (??).1 gives 1aab → 1 aba i.e. (??).1
again if α = a, a single TM step if α = b, and 1caba → 3bbcb if α = c

with the last one being the exception because the pointer goes right. Similarly
(??).2 gives the exception 3cb→ 2bb . (??).2 gives just (??).6, (??).4 (??).5
give 1aa→ 3bb , and (??).6-8 give (??).6, thus doing this for all the members

Developments in the analysis techniques for non-terminating Turing Machines 71

of (??) the following set of results:

1caba→ 3bbcb

3cb→ 2bb

1aa→ 3bb

1ca→ 2bb

(119)

Now try to continue (??) in the same way generates the following results (going
either way)

3cbd→ 3bbb

2bbc→ 1 abc

3bbd→ 1 aba

3bbbd→ 3 baba

(120)

Now try to continue (??) in the same way generates the following

1cabc→ 1b4

3bbbd→ 3 baba
(121)

The results (??), (??),(??), (??) are a subset of the IRR’s (ignoring the origins)
most likely to be useful for rapidly continuing (??) to (??).

8.1 Obtaining information about a TM from its IGR’s

Table ?? shows the frequencies of the different types of IRR’s obtained from
the computer program [?] applied to TM1. Here I have included the TM table
itself regarding the steps to the right as RLR and those to the left as LRL.

Table 10: The frequencies of the different types of IRR’s

length RLL RLR LRL LRR total
1 0 5 4 0 9
2 1 4 4 3 12
3 2 2 4 2 10
4 1 2 5 1 9
5 0 3 0 1 13
6 3 2 16 1 22
7 30 0 0 30 0
8 0 0 56 0 56
9 0 0 106 0 106
10 0 0 201 0 201

Each IGR in Table ?? is a logical implication from the existence of one IRR
to another, each containing the arbitrary strings T1 and T2. For example IGR55
on the right gives an IRR of type RLL if |T2| = 0. Its length is |T1|+4 = |T2|+6

but needs completion (i.e. further computation as far as possible) if |T2| > 0.

72 John Nixon

IGR51 gives an IRR of type RLR and requires |T1| + 4 = |T2| + 3 which is its
length.

The set of IGR’s in Table ?? is divided into two parts because the left hand
members either represent an IRR of type LRL or RLR (extendable IRR’s).
The corresponding right hand members represent IRR’s of four types such
that each IGR is of one of four types as follows: LRL ⇒ LRL, LRL ⇒ LRR,
RLR ⇒ RLR, RLR ⇒ RLL. The relation “could be followed by” is true where
the right hand member of the first IGR matches the left hand member of the
second one for suitable strings T1 and T2. Thus in many cases the matching will
be conditional and this relation will include all possible matches between the
IGR’s so that the absence of such a relation definitely rules out any possible
match. The relation “could be followed by” implies one IGR can follow the
other logically to generate a new IRR’s from a given one. For example IGR
41 can be followed by IGR 50 provided the last symbol of T2 is c. Because of
this any such relation needs to be verified for the particular case in question.

[delete? In the case that the number of IGR’s is finite as in this example
(??), the absence of IRR’s of type RLR of length n for all sufficiently large n
would follow from the absence of a closed cycle of IGR’s of type RLR ⇒ RLR

that can be repeated indefinitely.]
This relation can be represented by a directed graph (digraph) where the

nodes are IGR’s and is also separated into two parts because of the two types
of extendable IRR’s. The existence of any circuits should be established for
each part of the digraph separately. The existence of such a circuit implies that
(provided it can be iterated indefinitely) the number of IRR’s of extendable
type generated from the TM is infinite. This implies the existence of IRR’s
of this type for arbitrary large length (n). The other case of the absence of
a circuit implies their number is finite at least when the number of IGR’s is
finite.

The search for such closed cycles can be done following from the relation
on IGR’s defined by “could be followed by” that is easily obtained either from
Table ?? by matching the state and the symbols in the neighbourhood of the
pointer and has been programmed.

For the example TM ??, there were no circuits for the digraph of IRR’s of
type RLR but there were circuits for IRR’s of type LRL showing that arbitrar-
ily long IRR’s of type LRL could exist but not for IRR’s of type RLR. The two
circuits of length 1 involve respectively IGR’s 38c1 and 39c1. IGR 38 iterated
twice gives 2T1 →→ 3 babT2

c⇒ 2bT1 →→ 3 babaT2
c⇒ 2bbT1 →→ 3 babaaT2

and it can be clearly iterated n times giving 2bbn−1T1 →→ 3 babanT2. In
order to determine T1 and T2, the table of IRR’s generated from the TM shows
that an example of IGR 38 (IRR of length 5 number 5 found by searching for
IRR’s of the form of the RHS of IGR38) has context pair (bbcb, a) showing
that T1 = bbcb and T2 = a corresponding to the IRR 2bbcb →→ 3 baba.
Therefore a result of the iteration of 38 is 2bbn−1bbcb →→ 3 baban+1 for
n ≥ 0. There are many other examples of (T1, T2) which could be used here

Developments in the analysis techniques for non-terminating Turing Machines 73

such as anything resulting from applying IGR14 because this matches the
RHS of 38. Another example of this is 2bbcac →→ 3 babac giving the
result 2bbn−1bbcccb →→ 3 baban+2b for n ≥ 0. Similarly IGR 39 iter-
ated n times gives 3ccn−1T1 →→ 3 babanT2 and an example is T1 = ca3

and T2 = a. An example of a circuit of length 2 is 22 · 7. IGR 22 is

1T1 →→ 3 T2
22b⇒ 1cT1 →→ 1 aT2. If T1 begins with c then 22·7 can be written

as 1cT1 →→ 3 T2
22b⇒ 1ccT1 →→ 1 aT2

7b⇒ 1abcT1 →→ 3 baT2. However this
clearly does not iterate because 1abc does not match 1c. This also happens
with 1 ·26. An example of a circuit of length 2 that does iterate is 1 ·22 which

gives 1T1 →→ 1 T2
1b⇒ 1cT1 →→ 3 bT2

22⇒ 1ccT1 →→ 1 abT2. This iterates
to get 1c2nT1 →→ 1 (ab)nT2. An example of the first IRR is 1cb →→ 1 ab.
In this case T1 = cb and T2 = ab therefore 1c2ncb →→ 1 (ab)n+1. In these
examples, if the middle element of the IRR, the LHS, was added back, the first
part of them indicate a recurring move to the right, so there are examples of
this.

Because there are no circuits in the digraph of RLR type IGR’s, all the
IRR’s of type RLR are obtained by starting with the RLR IRR’s of length
2 and applying all the IGR’s of type RLR ⇒ RLR until this can be done no
more. These IGR’s are just those numbered 40 − 44, 46, 47, 50, 51. Of these
IGR’s 43, 44, 46 do not match any others. The IGR’s of type RLR generating
the IRR(2) are just 40 with context (c, b), 41 with context (a, b) and 47 with
context (c,). Carrying this out gives the results in the diagram following where
the counts for the numbers of distinct IRR’s for each length are given in the top
two rows. The frequencies match the IRR results of the computer program and
therefore the computer results for the cycles of the IGR’s validate the results
concerning the moving window behaviour of the TM guessed from Table ??.

These two results taken together show that arbitrarily long IRR’s of type
LRL exist but within them, the pointer can move no more than 6 spaces to
the left so for example a sequence of CS’s of the form 1 → 10 → 0 can exist
but not if it is of the form 1 → 9 → x → 10 → 0 with x ≤ 4 because this
has a subsequence of the form 9 → x → 10 which is an IRR of type RLR of
length 10 − x + 1 ≥ 7. If 9 > x > 4 as soon as the pointer after reaching 10

reaches 5 then the moving window argument applies. Note that this does not
stop the TM moving arbitrarily far to the right eg with one of the iterations
above following IRR 6.21 such as when all the symbols to its right are c’s.

From this it appears that there are no IRR’s of length ≥ 7 of the type RLR,
then all such IRR’s have type RLL, LRL, or LRR. If this is generally true, and
if the TM reaches position 6 followed by position 1 it cannot subsequently
reach position ≥ 7 because this would require a subsequence of CS’s of the
form n → 1 → n + 1 with n = 6 which would be an IRR by lemma ?? of
type RLR of length n + 1 contradicting the assumption. The pointer is then
constrained to positions ≤ 6, and if it reaches position 0 then because it
has reached position 5 previously, the same argument can be applied showing

74 John Nixon

n 1 2 3 4 5 6

m 5 4 2 2 3 2

7x 10 44 // 20x

5 40a //
40c ''

8 42 // 7
46

77

41 // 9
51

77

50 //
44 ''

11 43 // 21x

6x 13x

6 41 // 12x

9 47 // 9 41 // 8x

7x

8x

Figure 6: Provenance of the IRR’s of type RLR and lengths up to 6.
An IRR of length 1 is just a single TM step of type being defined as RLR (or
LR) if it goes right and LRL (or RL) if it goes left. n is the length of the IRRs,
m is the number of IRR’s of type RLR (i.e. LR) of length n. Only this type
of IRR’s are shown. Each of the numbers in larger font indicates an IRR of
the given length n given in (??). The numbers in smaller font are the IGR’s
in Table ?? needed to generate the IRR on the right of the arrow from the one
on its left with letter after it (if present) being α. An IRR labelled x indicates
that no IGR can generate any new IRR of type RLR from it.

Developments in the analysis techniques for non-terminating Turing Machines 75

Start

��

TM ?? progresses by sequences of
steps each moving the pointer left by
one space and restricts the pointer
to positions in a window of length 6.
Refer to IRR’s of type LRL with
length less than or equal to 6.(??)

Has the pointer reached one position
then another 5 spaces to its left?

yesoo

no

��
Continue the TM by one step

OO

Figure 7: Summary of the results of the analysis of TM(??)

that it cannot then reach position ≥ 6 etc.. This implies that the pointer is
constrained to being in a moving window of length 6 that moves left by one
space when the pointer moves just to its left. Because of this, if a snapshot
is taken of its behaviour whenever the TM reaches just beyond the left hand
end of the window, whatever symbol it finds there, the result will be at the
next snapshot that the symbols of the window have changed depending on
the previous symbols there and the new symbol. Therefore if the TM reaches
position 6 followed by position 1 then the above argument involving the moving
window applies. This condition of course will happen depending on the initial
contents of the tape of the TM that could start the TM doing one of the
iterations going right mentioned above.

Now it is obvious that this effective finite state machine is defined by all
IRR’s of the type LRL of length ≤ n for some length n. This behaviour going
left corresponds to the sequence A = p → 2 → p − 1 → 1 → p − 2 → 0

etc. for some positive integer p and requires B (a subsequence of A) i.e. 2 →
p−1→ 1 to exist which is an IRR of type LRL of length p. Also the sequence
p− 2→ 2→ p− 1 would have to exist which is an IRR of type RLR of length
(p − 1) − 2 + 1 = p − 2 so for this TM p could not be larger than 8 and the
longest IRR of type RLR needed could not have length greater than 6. This
is an effective finite state machine with internal state corresponding to the
set of symbols in the window and its actual machine state, and it continues
indefinitely unless a stationary cycle occurs which would halt it.

In this example the sequence 6→ 1→ 7 is impossible but 6→ 1→ 0 and
6→ 1→ 5→ 0 are not ruled out.

76 John Nixon

TM table(n = 1)

1 3a→ 1 a
2 3b→ 1 a
3 2c→ 1 c
4 1b→ 3 b
5 1c→ 1b
6 1a→ 2b
7 2b→ 2c
8 2a→ 3b
9 3c→ 3c

length = 2
1 1cb→→ 1 ab
2 2aa→→ 3 ba
3 2ab→→ 3 ba
4 2ac→→ 3 bc
5 1ac→→ 3 bc
6 2cc→→ 1bb
7 2bc→→ 1bb

8
3ca
3cb→→ 2bb

9 1cb→→ 2bb
10 3ca→→ 2bb
11 3cb→→ 2bb

12
3aa
3ab→→ 3bb

length = 3

1
1aab
1abb→→ 1 aba

2 1aaa→→ 1 aba
3 1aab→→ 1 aba
4 2cbc→→ 1 abc
5 1cac→→ 1 abc
6 1ccb→→ 3 bab

7
1cab
1cbb→→ 2bbc

8
3cba
3cbb→→ 3bbb

9 2baa→→ 3bbb
10 2bab→→ 3bbb

length = 4

1
1cccb
1abcb→→ 1 abab

2
1cbab
1cbbb→→ 3 baba

3 2bbcb→→ 3 baba
4 1caaa→→ 3 baba
5 1caab→→ 3 baba

6
1ccac
2acac
2acbc

→→ 3 babc

7
2cabc
2cbbc→→ 1bbbb

8
3ccac
3ccbc→→ 1bbbb

9

3caba
3cabb
3cbba
3cbbb

→→ 3bbcb

length = 5

1 1abbcb→→ 1 ababa

2

1ccaaa
2acaaa
2acbaa
1abaaa
1ababa

→→ 1 ababa

3
1ccaab
2acdab
1abadb

→→ 1 ababa

4
1cccac
1adcac
1aacbc

→→ 1 ababc

5 2bbbcb→→ 3 babaa

6
3ccdaa
2bbada→→ 3 babaa

7
3ccdab
2bbadb→→ 3 babaa

8
1ccccb
1abccb
1cabcb

→→ 3 babab

9
2bdcac
2bacbc→→ 3 babac

10 3cadbd→→ 3bbbbb
11 1cdbdb→→ 3bbbbb
12 2bbccb→→ 3bbbbb
13 2cadbc→→ 3bbcbc

length = 6

1 1abbbcb→→ 1 ababaa

2
2accdaa
1abbada→→ 1 ababaa

3
2accdab
1abbadb→→ 1 ababaa

4

1cc4b
1abcccb
1cabccb
1ccabcb
2accdcb
2acdbcb

→→ 1 ababab

5
1abdcac
1abacbc→→ 1 ababac

6 2bbbbcb→→ 3 babaaa

7
3cccdaa
2bbbada→→ 3 babaaa

8
3cccdab
2bbbadb→→ 3 babaaa

9
2bbcccb
3ccdbcb
3cccdcb

→→ 3 babaab

10
2bbdcac
2bbacbc→→ 3 babaac

11 3caadbd→→ 3 bababa
12 1cadbdb→→ 3 bababa
13 3cdbdbd→→ 3 bababa
14 1cabbcb→→ 3 bababa

15

1adcaaa
1cabada
1aacbaa
1cccaaa

→→ 3 bababa

16
2bacdaa
2bbcaaa→→ 3 bababa

17

1adcaab
1cabadb
1aacbab
1cccaab

→→ 3 bababa

18
2bdcaab
2bacbab→→ 3 bababa

19

1ccccac
1abccac
1cadcac
1caacbc

→→ 3 bababc

20 2caadbc→→ 3b5c
21 2cdbdbc→→ 3b5c
22 2bbccac→→ 3b5c

(122)

Developments in the analysis techniques for non-terminating Turing Machines 77

The IRR’s of (??) includes many examples of different IRR’s with the
same RHS’s and examples where many origins correspond to one RHS. The
distinction between these cases is because two IRR’s are the same if and only
if they have the same middle member (originally known as the LHS) and is
omitted for brevity. 40 → (b,)42 → (bb, c)41 → 51 These specialisations
remove the conditions that otherwise would apply to the connections between
the IGR’s. Can this be done systematically to all the IGR’s?

1T1bb→→ 2T2c ,3T1b→→ 2T2

Show this gives rise to finite state machine behaviour and relate it to nL
and nR in my first TM paper.

If the IGR’s are related by “can be followed by” it is not necessarily true
that if A → B and B → C then A → B → C. What are the extra conditions?
If they could all be found then all the conditions for closed cycles could be
found. Find all IGR’s x such that x → x. Combining RLR iterations with
LRL iterations for a TM with cycles in both cases. This would give rise to
possibly repeating cycles that might be describable as a simulated TM.

8.2 Approaches to the analysis of a simpler example
with quite a different behaviour

Consider another example given by

1a→ 2b 1b→ 2 a

2a→ 1b 2b→ 2 a

3a→ 3a 3b→ 1 b
. (123)

Table 11: The frequencies of the different types of IRR’s

length(n) RLL RLR LRL LRR total
1 0 3 3 0 6
2 1 1 3 0 5
3 1 1 2 1 5
4 1 1 2 0 4
5 1 1 2 1 5
6 1 1 2 1 5

For this TM the computer program [?] gave the results in Table ?? and it
appears that the frequencies in the row for n = 5 are then repeated indefinitely
for larger values of n which was checked to n up to 20. The results for the

78 John Nixon

IRR’s up to length 8 are given in (??)

TM table(n = 1)

1 1a→ 2b
2 1b→ 2 a
3 2a→ 1b
4 2b→ 2 a
5 3a→ 3a
6 3b→ 1 b

length = 2
1 3ab→ 1ab→ 2 aa
2 2ab→ 1bb→ 2 aa
3 1ab→ 2bb→ 2 aa
4 3ab→ 3ab→ 2 aa

5
1
2

}
ab→ 2aa→ 2bb

length = 3
1 3abb→ 2aab→ 2 aaa
2 1aab→ 1bbb→ 2 aaa
3 2aab→ 2bbb→ 2 aaa

4
1
2

}
abb→ 2aaa→ 1bbb

5 3aab→ 3aab→ 1bbb
length = 4

1 3abbb→ 2aaab→ 2 aaaa
2 2aaab→ 1bbbb→ 2 aaaa
3 1aaab→ 2bbbb→ 2 aaaa

4
1
2

}
abbb→ 2aaaa→ 2bbbb

length = 5
1 3abbbb→ 2aaaab→ 2 aaaaa
2 1aaaab→ 1bbbbb→ 2 aaaaa
3 2aaaab→ 2bbbbb→ 2 aaaaa

4
1
2

}
abbbb→ 2aaaaa→ 1bbbbb

5 3aaabb→ 1abbbb→ 1bbbbb
length = 6

1 3abbbbb→ 2aaaaab→ 2 aaaaaa
2 2aaaaab→ 1bbbbbb→ 2 aaaaaa
3 1aaaaab→ 2bbbbbb→ 2 aaaaaa

4
1
2

}
abbbbb→ 2aaaaaa→ 2bbbbbb

5 3aaabab→ 2abbbbb→ 2bbbbbb
length = 7

1 3ab5b→ 2aa5b→ 2 a7

2 1aa5b→ 1b6b→ 2 a7

3 2aa5b→ 2b6b→ 2 a7

4
1
2

}
ab5b→ 2aa6 → 1b7

5 3
aaabaab
aaaabbb

}
→ 1ab5b→ 1b7

length = 8
1 3ab6b→ 2aa6b→ 2 a8

2 2aa6b→ 1b7b→ 2 a8

3 1aa6b→ 2b7b→ 2 a8

4
1
2

}
ab6b→ 2aa7 → 2b8

5 3

{
aaabaaab
aaaabbab
aaaababb

}
→ 2ab6b→ 2b8

(124)

Developments in the analysis techniques for non-terminating Turing Machines 79

and the number of distinct extra IGR’s needed to obtain the IRR’s of length
2, 3, etc. are : 5 3 1 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16. The strongly
connected components with more than one element are just two with

SCC1 =

{
1T1 →→ 2 T2

b⇒ 2aT1 →→ 2 aT2

2T1 →→ 2 T2
b⇒ 1aT1 →→ 2 aT2

SCC2 =

{
2T1 →→ 1T2

a⇒ 2T1b→→ 2T2b

2T1 →→ 2T2
a⇒ 2T1b→→ 1T2b

. (125)

Before going any further it will be very convenient to introduce a symbol

p(1, 2, n) =

{
1 n odd
2 n even

}
where p stands for parity and the arguments are the

symbols for the TM state not the integers 1 and 2 and so this will be used
in place of a particular TM state. From the computer program output, the
IGR’s appear to be infinite in number as well as the IRR’s but with a more
complicated structure. Thus it seems to indicate that the IRR’s are simpler
to characterise than the IGR’s, so the analysis will start there. From the
computer output, there seems to be a general result (??) for the IRR(n) which
is as follows:

1

2

}
abn−2b→ 2aan−1 → p(1, 2, n)bn n ≥ 2

3abn−2b→ 2aan−2b→ 2 an n ≥ 3

1aan−2b→ p(1, 2, n)bn−1b→ 2 an n ≥ 2

2aan−2b→ p(2, 1, n)bn−1b→ 2 an n ≥ 2

3asn−1(a, b)→ p(1, 2, n)abn−2b→ p(1, 2, n)bn n ≥ 5

(126)

where sn−1(a, b) is the set of all sequences of a and b of length n − 1 such that
3asn−1(a, b)→ p(1, 2, n)abn−2b but is not characterised any further yet.

Proof. To prove this by induction using results for n ≤ 5 that are easily checked
in the computer output Table ??: first F needs to applied to (??).1,3,4 only,
because (??).2 and (??).5 are not of extendable type. After proving these by
induction, then the others will follow. The backward search gives, writing each
step unless otherwise indicated:

1abn−2bα

{
α=b← 3abn−2bb

← 2abn−3abα← 1abn−4aabα← 2abn−5aaabα . . . p(2, 1, n)aaan−3bα← ∅
.

(127)

80 John Nixon

Likewise

2abn−2bα



α=a←
{
1

2

}
abn−2bb

← 1abn−3abα←


2abn−4aabα←


1abn−5aaabα(1){
1

2

}
abn−4abbα

{
1← 3abn−4abbα← ∅
2← ∅

3abn−3abα← 3abn−3abα← ∅

.

(128)
Here there is a cycle of length 2 that ends at (1) when n is odd by reaching
1aaan−3bα from which no further backward steps are possible. If n is even it
is very complicated. The results (??) and (??) can be summarised by

1abn−2bα
b← 3abn−1b

2abn−2bα


←

{
1

2

}
abn−1b

n even← 3asn−1(a, b)α
n odd← ∅

(129)

The first of these gives the IRR (??).2 with n increased by 1 and the second
gives both parts of (??).1 with n increased by 1 using the following results (??)
(that are very easy to show) to get the RHS’s:

1bna→ 2bn+1

1bnb→ 2 an+1

2bna→ 1bn+1

2bnb→ 2 an+1

2ban → 2 an+1

2aan → p(2, 1, n)bn+1

(130)

together with p(2, 1, n) = p(1, 2, n+1). Applying F to (??).3 gives (??).4 with
n → n+1 and vice versa with α = b. Putting α = a on the left of (??).4 gives
p(1, 2, n + 1)abn−1b → 2aan → p(1, 2, n + 1)bn+1 which contains the right
hand half of (??).5 and because the conditions of Lemma ?? are satisfied it is
an IRR of type RLR with n → n+1. This together with (??) establishes (??)
by induction.

These middle elements (LHS) in(??) were included for clarity. They are
a record of the successive values of α used in the chain of applications of F
starting from the single TM steps. In this proof, the middle elements just
need α to be added at the appropriate end, and the new RHS is just found
from the original RHS and α by taking the computation as far as possible.

These results for the IRR’s can now be expressed in terms of the IGR’s
that generate them. These IGR’s were implicit in the above proof.

Developments in the analysis techniques for non-terminating Turing Machines 81

Directly from (??).2 with α added gives

2αaan−2
{← 3αabn−2b

b← 1aan−1b
(131)

1.1(RLR)
1
))

1.2(RLR)

//3

2oo 3(LRL)
4 // 4(LRL)

6��
5
oo

2(RLL) 5(LRR)

Figure 8: The relationship between the IGR’s in (??) and the parts
of (??) for consecutive values of n. The nodes in larger font are IRR’s in
(??) numbered consecutively and the type of the IRR appears in parentheses
after the IRR number. Each arrow corresponds to an IGR in (??) including
the one relating (??).1.2 to itself and are also numbered consecutively. IGR’s
1 and 6 generate IRR’s of non-extendable type. The two disconnected parts
correspond to SCC2 and SCC1 respectively. To these the two relationships in
(??).{7,8} must be added.

The IGR’s are as follows in (??). The last two don’t involve T1 and T2
because each is used only in a single context as shown given by specifying and
including the values of the arbitrary strings into the IGR’s. If there are more
than one array in an IGR, the top values go together to get one result, and
the bottom ones to get another result.

82 John Nixon

1T1 →→
{
1

2

}
T2b

n b⇒ 3T1b→→ 2T2a
n+1 for n ≥ 0

2T1 →→
{
1

2

}
T2

a⇒ 1T1b→→
{
2

1

}
T2b

2T1 →→
{
1

2

}
T2

a⇒ 2T1b→→
{
2

1

}
T2b

1T1 →→ 2 T2
b⇒ 2aT1 →→ 2 aT2

2T1 →→ 2 T2
b⇒ 1aT1 →→ 2 aT2

2aan−2bT1 →→ 2 anT2
a⇒

3asn−1(a, b)T1 →→ p(1, 2, n + 1)bn+1T2 for n ≥ 4

3b→→ 1 b
a⇒ 3ab→→ 2 aa

3ab→→ 2 aa
a⇒ 3aab→→ 1bbb

. (132)

Therefore the LIGR’s found are as follows:

1T
b← 3Tb

2T
a← 1Tb

2T
a← 2Tb

1T
b← 2aT

2T
b← 1aT

2aan−2bT
a← 3asn−1(a, b)T

3b
a← 3ab

3ab
a← 3aab

. (133)

The result (??).6 can, from the computer results for n = 4 and 5, be shortened
by absorbing the b on the extreme left into the arbitrary string T1 because the
pointer does not reach that far during the computation. Attempting to prove
this generally seems a bit difficult.

The LIGR’s found by the computer program when n is 6 are as follows:

1T← 3Tb

2T←
{
1Tb

2Tb

1T← 2aT

2T← 1aT

2aaaT← 3aaabT

3T← 3aT

(134)

However by combining the results of ?? with the single steps of the TM
itself, it is quite easy to come up with the following description of the TM:

Developments in the analysis techniques for non-terminating Turing Machines 83

Table 12: Equivalent description of TM ??

A: 2 an B: 1bn C: 2bn D: 3an

a→ B†(n even) a→ C a→ B a→ D
a→ C†(n odd) b→A† b→ A† b→ B*.
b→ A

Here each column corresponds to the CS at its head labelled from A to
D. The meaning of the entries in the body of the table is that if the symbol
on the left is at the pointer in the CS (extending the string by one symbol),
the result of the following computation is the CS indicated on the right with
n replaced by n+1. The symbol †indicates that the pointer swaps sides and
the result at * is actually 1an−2bbb if n > 2 so that the new n is now 3.
The other cases are dealt with by 3ab → 3ab → 2 aa, 3bb → 2 ab, and
3aab→ 3aab→ 1bbb . Notice that when the pointer swaps ends going right,
only b’s are produced, and if it swaps ends and goes left only a’s are produced.
Also the TM cannot reach a configuration in D by steps in Table ?? unless it
started from a configuration in D, so its description should start from D. As
long as the new symbol is a the TM continues to the right. If a b is reached,
it goes to a configuration in B, from where successive a’s alternate between
CS’s B and C. If a b is reached in either B or C then it swaps sides leaving
a’s and getting to A. Then more b’s just leave it in A, but an a makes it swap
sides to B or C according to whether n is even or odd respectively. Thus the
description of TM (??) is clearly explained as an expanding cycle, which to
me seems a satisfactory place to leave the general analysis of this example.

In general the question remains that because IRR (??).2 cannot generate
any new IRR’s with F, how does this result relate to others to which it must
relate because of neighbouring symbols. For example if a is added on the left
and the computation is continued with ?? it gives
3aabn−2b→ 2aaan−2b→ 2aan → p(2, 1, n)bn+1 which (ignoring the interme-
diate step) by lemma ?? is not an IRR (at least for n = 3). Putting bk on the
left of (??).2 gives 3bkabn−1b→→ 2bk−1ban+1 → 2 an+k+1 and again putting
a on the left gives 3abkabn−1b→ 2aan+k+1 → p(2, 1, n + k + 1)bn+k+2 . This
shows that there can be other methods than F for generating IRR’s from others
that increase the length of the IRR by 1.

Following up on this idea gives an apparently general method of analysis
that seems to generalise (??). Let X be an IRR of length n of type RLR
then it is extendable by F as in Theorem ?? provided a suitable added symbol
α can be found giving an IRR of type RLL or RLR. Alternatively if X is of
type RLL i.e. of type n → 1 → 0 (see the notation of Section ??) then the
computation can be continued after adding a symbol α on the left to get either
one of the forms n → 1 → 0 → n + 1 or n → 1 → 0 → −1. In either case
there is a CS n′ (which could be the same as n) and is the last to be arrived
at out of the CS’s (if there are more than one of them) that occur with the

84 John Nixon

pointer at position n before the CS 0 is reached. Therefore the computation
can be written as n → n′ followed by either Y1 = n′ → 0 → n + 1 (type
RLR) or Y2 = n′ → 0 → −1 (type RLL). The only way of avoiding either
of these possibilities (in both cases when X has type RLR or type RLL) is if
the computation after the CS 0 continues indefinitely with the pointer in the
range [0, n]. In this case because there are a finite number of CS’s involved, the
sequence of CS’s representing the computation must eventually repeat a CS
therefore a stationary cycle occurs after the computation reaches CS 0. There
is no other CS 0 entered before the CS’s 0 given here because these are derived
from X where it is reached by a single TM step, therefore by Lemma ??, Y1
and Y2 are also IRR’s of length n + 1. Here the CS n′ is uniquely determined
by n so Y1 or Y2 is uniquely determined once X is fixed, and this works for
every value of α.

This result in either of these other cases could be called F(X) where F

has now been extended to apply to IRR’s that were formerly non-extendable
i.e. those of types RLL and LRR. The result F(X) is another IRR of length
n + 1 which, in the case that X is of the type RLL or LRR, is preceded by
the computation n → n′ starting and ending at the same point. The IRR’s
obtained like this from IRR’s of type RLL or LRR cannot generate any new
IRR’s that are not already obtainable from IRR’s of type LRL or RLR because
these are already known to be the whole set of IRR’s by Theorem ??.

The result of the previous paragraph (and of course its right-left reversed
form) can be combined with the results of Section ?? to show how an infinite
sequence of IRR’s of lengths increasing by one at each step can be derived
that is prevented only the presence of stationary cycles or the absence of new
origins. They can be chained together because the truncations can be undone.
In this sequence the IRR’s that start on the right, symbols are added on the
left by G and on the right by F and if they started on the left it would of course
be reversed. Therefore the pointer generally goes back and forth with ever
increasing sweeps across the string of symbols on the tape (though it may not
happen in every case), extending in both directions if both F and G continue
to be involved.

These results for IRR’s starting on the right can be symbolised as follows:

∃RLR(n)⇒ ∀(α used by the TM){no new origin found using α in F ∨
∃RLR(n + 1) ∨ ∃RLL(n + 1) ∨ ∃ stationary cycle}

∃RLL(n)⇒ ∃RLR(n + 1) ∨ ∃RLL(n + 1) ∨ ∃ a stationary cycle
(135)

An equivalent (mirror image) idea relating IRR’s of types LRL, LRR exists
which should generate the same thing from the other end ie. IRR’s starting
at the left. These are both approaching the description of the TM behaviour
as a sequence of expanding cycles from opposite ends but represent the same
reality. Involved in general (as shown by the analysis of TM ??) are both
stationary cycles where the TM effectively stops, and sequences of symbols

Developments in the analysis techniques for non-terminating Turing Machines 85

which the reversed TM cannot cross which can prevent a new origin being
found. It seems to me that this will generate the interpretive cycle of a TM
that has been shown to have this behaviour.

References

[1] Methods for Understanding Turing Machine Computations

[2] Reverse engineering Turing Machines and the Collatz Conjecture

[3] The previous version in D of the computer program for analysis of Turing
Machines

[4] Program for just doing the backward search for a single CS

[5] The new program tie v3.2 for doing the computations in this paper

Anything beyond this point is probably not needed but is kept just in case.
It will be removed to another document later.

Lemma 8.1. The backward search from any CS of the form 1Tadbaaaα
cannot lead to any new LIGR’s or RCS’s provided the string T contains the
symbol a. ******** not needed ************

Proof. This is by continuing the backward search from there. This gives the
following tree

1Tadbaaaα←

1Tadca3α←

3Tadcda2α← 3Tadcda2α←
{
2Taacda2α
1Tadcba2α∗

1Tacca3α← 2Tacca3α← 2Tabca3α
3Tadbadaα

(136)

1Tadcba2α← 3Tadcbdaα← 2Tadcadaα← 2Tadbadaα← 1Taabadaα (137)

where the computation stopped whenever either no reverse TM step is possible,
or when by Lemmas (??) or (??) the pointer cannot go beyond the string as
a result of continued backward searching. Because all branches of the tree do
eventually lead to a halt, no LIGR’s or RCS’s can result from further backward
searching.

Lemma 8.2. ************ not needed ************ Backward searching
starting from any CS of the form 1Tdcabadaα leads to exactly the following

https://www.longdom.org/articles/methods-for-understanding-turing-machine-computations.pdf
https://www.longdom.org/articles/reverse-engineering-turing-machines-and-insights-into-the-collatz-conjecture.pdf
http://www.bluesky-home.co.uk/tie_v2_1.txt
http://www.bluesky-home.co.uk/tie_v2_1.txt
http://www.bluesky-home.co.uk/origins.txt
http://www.bluesky-home.co.uk/tie_v3_2.txt

86 John Nixon

set of CS’s regardless of the arbitrary string T in addition to possible CS’s with
the pointer at the left depending on T:

1Tdca2dbdb

3Tdca3dbd

2Tdca3dbc

1Tdcdbdbdb

3Tdcdcbdbd

2Tdcdcbdbc

3Tdcdbadbd

2Tdcdbadbc

(138)

These are related to the set of LIGR’s in (??).15-19.

Proof. The backward search stops if either (1) the pointer can be shown not
to get to the right because of cx on the right of the pointer or (2) no further
backward TM steps are possible or (3) the end of the known symbols on the
string is reached or (4) a stationary cycle is reached. The numbers after *
indicate continuations.

Developments in the analysis techniques for non-terminating Turing Machines 87

1Tdcabadaα←


1Tccabadaα

3Tdcdbadaα←


3Tdcdbadaα←

{
2Tacdbadaα
1Tdcbbadaα

1Tdcdbadaα←
{
1Tdccbadaα
3Tdcdbddaα ∗ 1

∗ 1←
{
2Tdcdaddaα← 1Tdcaaddaα← 3Tdcadddaα← 1Tdcadbdaα ∗ 2
1Tdcdbdbaα ∗ 5

∗ 2←
{
1Tdcacbdaα
3Tdcadbdaα← 2Tdcadadaα← 1Tdcaaadaα← 3Tdcaaddaα ∗ 3

∗ 3← 1Tdcaadbaα←


1Tdcaacbaα

3Tdcaadbdα←
{
2dca2dadα← 1Tdcaaaadα ∗ 4
1Tdca2dbdb

∗ 4← 3Tdca3ddα← 1Tdca3dbα←

1Tdca3cbα
3Tdca3dbd

2Tdca3dbc

∗ 5←


1Tdcdbcbaα← 1Tdcdccbaα

3Tdcdbdbdα←

2Tdcdbdadα← 1Tdcdbaadα←
{
1Tdcdcaadα ∗ 6
3Tdcdbaddα ∗ 8

1Tdcdbdbdb

∗ 6←


1Tdcccaadα

3Tdcdcdadα← 3Tdcdcdadα←
{
2Tdcacdadα
1Tdcdcbadα← 3Tdcdcbddα ∗ 7

∗ 7←


2Tdcdcaddα← 2Tdcdbaddα← 1Tdcabaddα

1Tdcdcbdbα←

1Tdcdcbcbα← 1Tdcdcccbα
3Tdcdcbdbd

2Tdcdcbdbc

∗ 8← 1Tdcdbadbα←

1Tdcdbacbα
3Tdcdbadbd

2Tdcdbadbc

(139)

Note forward reference to Table ??.

Lemma 8.3. ****** not needed ********* If in a row of Table ??, some

88 John Nixon

LIGR’s are produced then in another row with the RHS of “its affect” differing
only by the symbol next to the string T, the same set of LIGR’s is produced.

Proof. Suppose a backward search gives

STβT1α← A (140)

in the Table ?? where the pointer is at the right hand end of T1 where A is a
set of RCS’s and LIGR’s. Then this will be based on

STT1α← S1TT2α (141)

(an RCS) that may be also in the same table where in (??) and (??) the
pointer is at the left hand end of T2, and α and β are arbitrary symbols (with
α and T having their usual roles) and T1 and T2 (as is T) are arbitrary strings
of symbols and S and S1 are arbitrary states. This is because truncating the
string to the right of T by one symbol on the left will convert any LIGR’s
arising only because of that last symbol to RCS’s. This will be done several
times if necessary to get the required line of the grand search. Therefore (??)
can be written as

STβT1α← S1TβT2α← A. (142)

If the pointer does not reach β in this derivation, it follows from this that β
can be replaced by any other symbol say γ

STγT1α← S1TγT2α← {S2TδT2α, A}. (143)

where the first member of the set on the right (an RCS) is there if and only
if in the TM table S2δ → S1γ , and γ and δ are also arbitrary symbols. If
(??) does not lead to any RCS’s then the derivation cannot have the pointer
reaching β then the derivation is followed as in the proof of (??) except that
β is replaced by γ and the pointer never reaches γ leading to the same LIGR’s
after the unused symbol γ has been removed and no RCS’s. If β is reached in
(??) then follow the reverse steps that lead to the pointer reaching β giving
some RCS’s that could be different from those in (??).

As long as β is not reached by the pointer, the symbols to the right of β are
independent of β. Therefore if the backward search from (??) is completed, the
corresponding results with a different value of β are obtained by (1) assessing
whether or not the single step to β is possible from the start or from any point
where the pointer reaches one space to the right of β and if so including the
RCS obtained, and (2) taking the results that don’t take the pointer to β and
replacing β by the new symbol. This leaves the LIGR’s unchanged after the
symbol in place of β that plays no part in the calculations is removed.

Lemma 8.4. Doesn’t seem to be needed but this looks usable.********* Any
RCS of the form 2Tbbn+1addα does not lead to any LIGR’s for n ≥ 0.

Developments in the analysis techniques for non-terminating Turing Machines 89

Proof. For convenience let the string bn+1addα be denoted by S because it
remains the same throughout the proof and note that the leftmost symbol of S
is b if n ≥ 0. Add an arbitrary symbol β on the left according to the procedure
described in section ?? and continue the backward search from there gives

2TβbS←
{
1TabS

2TbbS
. The second case is as above with n increased by 1. Repeat

this for the first case giving 1TβabS ← 1TcabS. Repeat this argument again
gives

1TβcabS←


1TccabS ∗

3TβcdbS←

3TβcdbS←

1TβcbbS
2TacdbS ∗
3TccdbS ∗

1TβcdbS← 1TβccbS

(144)

In this search tree, ∗ indicates that by Lemma ?? the pointer can never reach α
i.e. no new LIGR’s can result from further additions of symbols. Because this
search tree is complete it follows that the backward search from 2Tbbn+1addα
cannot lead to an LIGR unless the backward search from 2Tbbn+2addα also
leads to an LIGR. This gives an infinite regress showing that no RCS of this
form can lead to an LIGR for n ≥ 0.

