Date: 2025-12-30

Turing Machines

Abstract

Developments are given here for the analysis technique for non-
terminating Turing Machines (TM’s) that I described earlier in [I] and
[2]. The main new ideas are the introduction of IRR patterns i.e. con-
straints satisfied by large sets of IRRs (Irreducible Regular Rules) and
the logical relationships between them as a result of the general method
for deriving IRR’s from others described in my earlier paper. These log-
ical relationships will be referred to as IGR’s (IRR Generating Rules).
IGR’s have been reduced to their minimal form in a way analogous to
the way in which regular rules were reduced to IRR’s by taking out
symbol strings that played no essential role. In the case of IGR’s these
symbol strings (actually pairs) will be referred to as context pairs. A
new version of my computer program extending the previous analysis is
described and is freely available that generates these IGR’s up to a given
length of IRR’s that they generate. The results show repetition of the
left hand halves (Left IGR’s or LIGR’s) of IGR’s associated with differ-
ent right hand halves. Because the LIGR’s can be derived independently
of the right hand halves of IGR’s, this should be done separately and
can be done using the currently known IRR’s as previously described in
my earlier papers. The LIGR’s can be used to calculate all the IRR’s
of a TM. A procedure for the generation of all the LIGR’s for a TM
has been suggested and is expressed here by a detailed analysis of a TM
though not yet as computer code.

Mathematics Subject Classification: 68Q25

Keywords: Turing Machine (TM), Irreducible Regular Rule (IRR), IRR
Generating Rule (IGR), LIGR (Left IGR).

1 Introduction

A lot of material that probably will not be needed has been removed. It will be
available as an old version to show where the ideas came from, and this much
shortened version will take its place as the latest version under active editing.
The following example was studied because old attempts at the analysis of
became very complicated.

2 John Nixon

la — 2b_
1b — 3b
1c — 1b_
2a — 3b_
2b — 2c_ (1)
2c > 1c
3a—1.a
3b—+1.a
3c — 3c_

The main results are contained in @D, and which were updated
together with some text on page 59. Table [1| is summarised by Figure [2| and
shows how the TM can be ‘trapped’ in a steady movement to its left. The
results @, , seem to be adequately describing the TM.

section 77 needs some discussion because the two examples are so different.

Some general heuristics are given right at the end regarding using the IGR’s
to generate a description of the action of a TM in terms of ever expanding cycles
(when possible). The TM is an example of this while TM is not.

A lot of material has been removed to 2017’s Notes on Turing Machines.
These notes are now mostly superseded, but there may be a little there that
is of use.

Comments are welcome. Please send them to john.h.nixon1@gmail.com

Consider another example given by

la—2b. 1b—2a
2a—1b. 2b—2.a . (2)
3a—3a. 3b—10D

The analysis techniques were initially applied to the following TM (3)) which
was generated randomly with 5 states and 5 symbols. This TM, being much
larger than any that I have analysed before, has proved to be a much more
challenging case.

la—+2d 2a—1c. 3a—4c. 4a—+3Db ba—2e
lb—+4d 20 —+4c 3b—+4c 4b—>4b_ 5b — 3.e
ic—+3a 2c—1d. 3c—2a 4c—3c. 5c— 3a_ (3)
1d +2b. 2d +1la. 3d—+5c 4d —+5c bd—4.a
le -+ 2b. 2¢e +3.c 3e —+3b_. 4e — ba. be — 3a_

I have just started (but not finished) the same analysis of the old example (3)
to see how easy the method will be will be for larger TM’s.

http://www.bluesky-home.co.uk/2017_Turing_notes.pdf

Developments in the analysis techniques for non-terminating Turing Machines 3

(2 2. aa(2ad — 2.aa)

2 4.cd

= 2.d{ 5 2db_(2cd — 2db_)

<% 2ab_(2dd — 2ab.)

1¢ [> 3.cd (4)
244

5 3a

5 2b_

[> 2b.

1c_

— 4 _c

2{ 514 (5)
d

— la_

e

[— 3¢

O"\LW

2 dc_

i) 4 c

3¢ $2.a (6)
d

— b.c

% 3b_(3e — 3b.)

2 3b

2 4b_(4b — 4b.)

4{ 5 3c. (7)
4 5.c

2 ba_

(326
536

5{ 5 3a_ (8)
444

L 5 3a_

A branch can end because of three conditions, (1) a repetition or loop
(indicating that there is no point in continuing) because a substring in the
same branch has been developed before and (2) a reference to a loop. This is
indicated by the loop label (a greek letter) and an asterisk and (3) when the
computation from the same CS appears on another branch. If the computation
ends in a subset of a CS previously developed, the extra symbol(s) need to

4 John Nixon

be added resulting in another subtree. A very simple case follows. To get
the results for 3b|b_ from those for 3|b_ (¢ an extra b must be put on the
left. The first branch gives rise to the loop ¢ going left and the added b gives
3bba — 1_aba and in its new location it gives rise to a new loop 1aad — 1_aba.
The branch to 3b|c_ going to the loop 6 going to the right, gives this same loop
after the b is added on the left because the extra symbol is added on the left.
If the new symbol is added on the opposite side to the direction of travel in
a cycle of the loop the same loop with be obtained after the symbol is added,
but not otherwise.

How to handle reversals of direction add the extra symbol to extend the
tree as above or start a new one? a reversal of direction so that the pointer
is on the other side of the string. In this case the computation continues on
another tree because every possible state and symbol pair (accounting for all
possible cases) is at the root of a tree

Another example is how the development of 2|bb_ is obtained from that
of 2[b_. Putting a b on the left gives the first result 1baba — 3_baba. This
results in two loops because both starting points 3cbad and 3bbbd match the
endpoint 3_baba. This is indicated by 3cbad — 3bbbd — 3_baba. The other
cases are very easy. Note that the | has no meaning unless each symbol is
added one at a time so they are omitted if this does not happen.

In case (1) in what follows the numbers in typewriter font represent different
repeating conditions. The number is the length [of the string over which a
repetition can occur. This includes the symbol added so it is always > 1 and
if 1 = 1 there is no symbol string to be matched. The repeating condition is
where the state, pointer position (right or left) and the symbol string match
between a CS and another CS that is in the path to it from the root of the tree.
Between these two CS’s the pointer moves in a range. A repetition also requires
every symbol in the second CS in the range to match the corresponding string
from the first CS.

In case (2) a branch ends because the computation (taken as far as possible)
goes in the opposite direction. This is indicated by an italicised identification
number. These numbers are also repeated where a matching CS appears in
another tree from where the computation can continue.

Developments in the analysis techniques for non-terminating Turing Machines 5

((

d
2 3b[b_(c) t) 1 aba(laad — 1_aba)
— 3bb|c_(0*)

S 2boq
— 2bfc(¢7)
[= 3.bc|(5%)
L (% 1.a[b(1db — 1_ab) ()
¢ 3.blaba(3cbad — 3bbbd — 3_baba)
2 31| S 3bbblc_(6*)

— 2|bb_(«) LN 2bb|c_(¢*)

L 5 1_abcl(n*, ignore x)
[> 1[b(1c — 1b_,7)

(

= 3pb.(0) <% 3.ba(5%)
) % 3blc_(6*)

2 2 (2b — 2¢_, ()
(

2. (x =d, 3bd — 3_ba)

5 1.c

\ = 1b47(7*)

L 5 1bb_(7*) o)

2 3|bb_(e*)

% 1-al{ > 3.bla(3bd — 3_ba, d)
= 2[bb_(a*)

5 3lc_(3¢c = 3c_,0)

3

(11)

Do the results @, and adequately characterise TM ?

By taking the longest results of the repeating cycles on the RHS’s of (9)),(10)
and i.e. 1_aba, 3. baba and adding every symbol in turn gives laaba —
1_abaa, laabaa — C, 1babaa — E, 1cabaa — 3b°_, 1baba — 3_baba, 3ababa —
A, 3bbaba — A, 3cbaba — E, 1caba — 2bbbb_ where I am using the capital let-
ter notation for pseudo-states in Table [Tl Another round of this will generate
all the results of Table [1I

(2 1_abalc(1abb — 1aab — 1bba — 1_aba)

4 3bc|(B) T 1.abe(n) { > 3blabc{ “X5° 1 a|babc(1db — 1.ab)
“%° 3_babalc(3cbab — 3_baba)

6 John Nixon

2 Formulating the condition for a repetition

In these trees if on any branch, the final CS matches an earlier CS in such
a way that the loop can be repeated (this might work after some symbols
not involved in the loop itself are ignored) then the algorithm terminates the
branch because continuing is a special case of what has already been done. If
this happens, all the CS’s that match the final CS should be listed in order
in parentheses, so that many other results of the TM can be found easily.

Suppose
CS; B cs, B ... (12)

is such a branch that ends in a repeating loop and the pointer is at the right
in each CS where CS; has length ¢ and in step 7 from CS; to CS;,; the pointer
reaches and uses 7(7) symbols (this excludes the last symbol arrived at that is
not yet read). CS; is a CS of length 1 with the pointer on the right and is just
one TM step away from the root which is a state and symbol pair. After lp — 1
steps in ((12)) giving a CS of length 7 = l, what is the condition for a repetition
of an earlier CS of length ¢ = ;7 This involves i — } steps in (|12)).

Because the symbols are added on the right, the tape positions will be
counted going to the right and the leftmost position is position 1 in all the CS’s.
The pointer starts at l; + 1 and first goes to ; +2 via iy — () + 2 (the symbol
positions used go from l; — r(l;) +2 to ; + 1 i.e. a segment of length r([})).
The complete potentially repeating computation reaches the following extreme
pointer positions in this order l} + 1,4 +2—r(l), L +2, 4 +3—r(lL +1),... k
because in the final step to get CS;, the pointer does not go beyond k. The
range of the tape affected by the computation is from position p to l inclusive
(see Figure [1) where

P= < imgmlg—l {i+2—r(i)}. (13)

The repeating condition implies that the states match between the start and
end of the computation and there is a pair of matching substrings of m symbols
in the two CS’s such that each substring lies within the range p to L and
must include all the symbols in that range on the left hand end otherwise the
computation could not be repeated due to a mismatch. Therefore p = l;—m+1
is the leftmost symbol position involved in the matching i.e. m =1 — p + 1.
The length of the potentially repeating rule is the length of tape involved in
iie. t=10 —p+ 1. Therefore t —m =16 — 1, > 1. One of the shortest
possible examples is 3¢ — 3c_. If there are no other symbols on the left, [; = 0
and [, =1 and p = 1 therefore m =0 and ¢ = 1 so in general ¢t > m > 0.
The notation | was introduced in the CS’s to indicate the limit beyond
which the pointer did not go to obtain the CS from the preceding one. This is
a visual indication of r(i) which is the number of symbols between | and the

Developments in the analysis techniques for non-terminating Turing Machines 7

i+2—1r(1) T

—~
.

~—
~

4 2 4 X X X X _
3 4 5 X X x|x X
5} 3 6 X XI/X X X X _
8 1 7 X X X X|x X X _
minimum: p = 3 8 X X X X X X X|x _
)

Figure 1: A schematic example of a repetition (states omitted). Here
lh =4,b =8, and p = 3 therefore m = 2 and ¢t = 6 and the repeating rule
has the form xxxxxx — xxxxxx_ where the x’s represent any symbols, and the
_’s are where the symbols are added at the pointer position. The strings of
symbols under the widehat ~ must be the same. These are the m symbols that
are repeated. The 7 is where p = 3 giving a visual indication of the end of
range of the symbols that are involved in the repeating computation rule.

end of the string where the symbol _ is, where ¢ is the length of the preceding
CS.

Table 1: A finite state machine going left derived from TM

A: 1_ababa | B: 1_abaab | C: 1_abaaa | D: 3_babab | E: 3_babaa

a— B a— C a— C a— A a— A
b— D b— E b— E b— A b— A
c—D c—D c— D c—D c— E

From this it appears that there are no IRR’s of length > 7 of the type RLR,
then all such IRR’s have type RLL, LRL, or LRR. If this is generally true, and
if the TM reaches position 6 followed by position 1 it cannot subsequently
reach position > 7 because this would require a subsequence of CS’s of the
foormn — 1 — n+ 1 with n = 6 which would be an IRR by lemma 7?7 of
type RLR of length n 4+ 1 contradicting the assumption. The pointer is then
constrained to positions < 6, and if it reaches position 0 then because it
has reached position 5 previously, the same argument can be applied showing
that it cannot then reach position > 6 etc.. This implies that the pointer is
constrained to being in a moving window of length 6 that moves left by one
space when the pointer moves just to its left. Because of this, if a snapshot
is taken of its behaviour whenever the TM reaches just beyond the left hand
end of the window, whatever symbol it finds there, the result will be at the
next snapshot that the symbols of the window have changed depending on
the previous symbols there and the new symbol. Therefore if the TM reaches
position 6 followed by position 1 then the above argument involving the moving

8 John Nixon

Start

TM [I] progresses by sequences of
steps each moving the pointer left by yes_{ Has the pointer reached one position
one space and restricts the pointer then another 5 spaces to its left?
to positions in a window of length 6. 'f]|,°

[Continue the TM by one Step]

Figure 2: Summary of the results of the analysis of TM

window applies. This condition of course will happen depending on the initial
contents of the tape of the TM that could start the TM doing one of the
iterations going right mentioned above.

Now it is obvious that this effective finite state machine is defined by all
IRR’s of the type LRL of length < n for some length n. This behaviour going
left corresponds to the sequence A =p -2 - p—1—-1—>p—2 =0
etc. for some positive integer p and requires B (a subsequence of A) i.e. 2 —
p—1 — 1 to exist which is an IRR of type LRL of length p. Also the sequence
p—2 — 2 = p—1 would have to exist which is an IRR of type RLR of length
(p—1) —2+ 1 =p— 2 so for this TM p could not be larger than 8 and the
longest IRR of type RLR needed could not have length greater than 6. This
is an effective finite state machine with internal state corresponding to the
set of symbols in the window and its actual machine state, and it continues
indefinitely unless a stationary cycle occurs which would halt it.

In this example the sequence 6 — 1 — 7 is impossible but 6 —+ 1 — 0 and
6 — 1 — 5 — 0 are not ruled out.

References

[1] Methods for Understanding Turing Machine Computations
[2] Reverse engineering Turing Machines and the Collatz Conjecture

[3] The previous version in D of the computer program for analysis of Turing
Machines

[4] Program for just doing the backward search for a single CS

[5] The new program tie v3.2 for doing the computations in this paper

https://www.longdom.org/articles/methods-for-understanding-turing-machine-computations.pdf
https://www.longdom.org/articles/reverse-engineering-turing-machines-and-insights-into-the-collatz-conjecture.pdf
http://www.bluesky-home.co.uk/tie_v2_1.txt
http://www.bluesky-home.co.uk/tie_v2_1.txt
http://www.bluesky-home.co.uk/origins.txt
http://www.bluesky-home.co.uk/tie_v3_2.txt

	Introduction
	Formulating the condition for a repetition

